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The operating characteristics ol' several phase-processing receivers for detection of a 
sine wave in Gaussian noise are deduced both analytically and by simulation and compared 
with optimum processors over a wide range of signal-to-noisc ratios.  Among the processors 
considered are (1) the optimum phase-processor lor small signal-to-noise ratio and known 
sine wave frequency,  (2) the maximum likelihood phase-processor for small signal-to-noise 
ratio and unknown sine wave frequency,   (3) the phase-difference processors for known or 
unknown sine wave frequency,  and (4) a phase processor that measures the scatter of phase 
samples about the best-fitting straight line.  It is found that using phase samples alone is 
much better than using amplitude samples alone, and is not much less effective than using 
amplitude and phase samples together when the number of samples is large and the signal- 
to-noise ratio of each sample is small; loss of amplitude information causes about 1 dB 
degradation in m;my important situations. 
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ABSTRACT 

The operating characteristics of several phas* -processing 
receivers for detection of a sine wave in Gaussian noise are 
deduced both analytically and by simulatirn and compared with 
optimum processors over a wide range of signal-to-noise ratios. 
Among the processors considered are (1) the optimum phase- 
processor for small signal-to-noise ratio and known sine wave 
frequency, (2) the maximum likelihocd phase-processor for 
small signal-to-noise ratio and unknown sine wave frequency, 
(3) the phase-difference processors for known or unknown sine 
wave frequency, and (4) a phase processor the* measures the 
scatter of phase samples about the best-fitting straight line. It 
is found Üiat using phase samples alone is much better than 
using amplitude samples alone, and ;s not much l(;ss effective 
than using amplitude and phase samples together when the num- 
ber of samples is large and the signal-to-noise ratio of each 
sample is small; loss of amplitude information causes about 
1 dB degradation ui many important situations. 
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DETECTION CAPABILITIES OF 
SEVERAL PHASE-PROCESSING RECEIVERS 

1. INTRODUCTION 

Optimum detection of a finite-duration sine wave of known frequency in 
Gaussian white noise involves the use of a matched filter.  The matched filter 
output is sampled at the appropriate time instant if phase-coherent reception 
is used, whereas the envelope-detected output is sampled if the received signal 
phase is unknown.   The sample is then compared with a threshold to decide 
whether a signal is present or absent.  Three major practical limitations that 
preclude Jie use of these processors are that either (1) ^he duration or location 
of the sine wave may not be known,  (2) the medium freqaency-spread may not 
be known (as for example in a fading medium), or (3) thebankof filters required 
to match unknown Doppler shifts may be too large or too expensive to build, es- 
pecially for a long duration sine wave and a multibeam receiving system. An- 
other disadvantage of such processors is that unknown noise levels require con- 
stant monitoring and threshold adjustment in order to realize a specified false 
alarm probability.  (The losses associated with this thresh )ld adjustment for a 
phase-coherent receiver are documented in reference 1. ) 

I 

What is desired is a bank of fewer filters of broader bandwidth than the 
unknown matched filter, accompanied by an adaptive processor that combines 
the appropriate number of broader-filter outputs for near-optimum detection 
and possesses a constant false alarm rate (CFAR) capability in unknown noise 
levels.   One possible way of partially fulfilling these requirements is based on 
the following observation: Even when the output signal-to-noise ratio (SNR) of 
a narrowband filter has dropped to the point where signal amplitude indications 
have vanished, a time history of the output phase samples continues to provide 
straight line patterns that can be discerned by a human observer.  Since the ob- 
server automatically searches out and averages the appropriate length of time 
history from the phase chart where the frequency line is stable, he is effectively 
performing a function approximating coherent processing over the appropriate 
(but unknowi a priori) time interval; this function can be interpreted as adaptive 
narrowband filtc1' g. The amount of additional SNR that can be gained from this 
phase-processing technique depends on the received line stability, the filter 
bank bandwidths, the human observer's capability, and the operating point (i. e. , 
false alarm and detection probabilities). 

;- 
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The advantages offered by this proposed phase-processing technique could 
be realized (and surpassed) using a filter bank of the appropriate width. However, 
since the appropriate width is not known a priori (and will probably vary with 
frequency, location, environment, and local conditions) the proposed suboptimum 
technique is definitely worthy of consideration and will be investigated in detail 
here to determine, quantitatively, the amount of improvement achievable, in 
practical situations.  Actually, several phase-processing techniques will bo in- 
vestigated and compared with optimum processing in order to determine the 
limits of the capabilities of each.  The CFAR capability will also be discussed 
when appropriate. 

Section 2 presents a definition of the problem to be considered and the 
forms of processing to be compared for use with both known and unknown sine 
wave frequency. Section 3 provides quantitative evaluations, obtained both analyt- 
ically and by simulation, of the performance of the various processors. Section 4 
contains conclusions about the relative merits of each processor.  The deriva- 
tions of the processing forms are presented in appendix A; useful geometrical 
interpretations of some of the processors, for both known and unknown sine 
wave frequency, are derived and discussed in appendix B; derivations of proc- 
essor performance capabilities are collected in Appendix C; and the simulation 
procedure and program is documented in appendix Ü.   For ease of cross refer- 
encing the appendixes aro arranged such that particular processors have the 
same section numbers in each appendix; e. g. ,  Processor V for known signal 
frequency is treated in sections A. 1. 5,  B. 1. 5, and C. 1. 5. 

2.    PROBLEM DEFINITION 

2. 1   KNOWN SIGNAL FREQUENCY 

The received signal (if present) has amplitude   P ,   phase    ^ ,   and fre- 
quency   f .    The sine wave frequency,    f ,   is assumed know., in this subsec- 
tion; this restriction is removed in Section 2. 2.    The sine wave amplitude,  PQ, 

is also assumed known.  As will be shown, however, none of the processors 
considered require or use knowledge of   P ,   i. e. , they are uniformly most 
powerful with respect to   P0 (see reference 2, pp.   88-92).  Therefore, this 
restriction can also be removed. Various assumptions about the extent of knowl- 
edge of sine wave phase,   \pQ, are made below. The received signal, s(t), is ex- 
pressed mathematically as a function of time,   t,    as 

s(t) - PQ COS (27rf0t +   ^0),  t   t   T , (1) 

_/ ;-,   .... 
 I .       _    ... ■ . 
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where   T   is the signal duration. This model allows for multipath in the medium, 
but not Cor fading.   More precisely, any fading must be slow enough so that no 
significant amplitude or phase change occurs during the time interval T. 

9 
The received noise,    n(t),   has a variance   o     and is stationary,   narrow- 

band, and Gaussian.   Although   <T
2

   is assumed known, several of the phase 
processors will not require or use this knowledge.   The received waveform, 
r(t),   is then given by 

^sraw^s^^^ 
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s(t) + n(t),    signal present 

n(t), signal absent 
(2) 

The processes described in (1) and (2) are considered to be the outputs of 
a narrowband filter (NBF) of some convenient bandwidth in a receiver preproc- 
essor.  These NBF outputs are sampled at time intervals approximately equal 
lo the inverse filter bandwidth, so that the in-nhase and quadrature output noise 
component samples are statistic.lly independent,   (if the received tme is not 
centered in the NBF,  P    is smaller than it would have been for a centered fil- 
ter; thus, mismatch of filter center frequency is easily incorporated in the size 

Of course, for known signal frequency, this mismatch can be avoided ) 

The received waveform (for signal present) can be represented in complex 
envelope notation (see reference 3, chapters I and II or reference 4, appendix 
A) as 

r(t) = Re | exp (i2H0t) [P0 exp (i ^0) + n(t)]|    , (3) 

where   f0   is also used for the noise center frequency,   and noise complex en- 
velope   n(t)   is given in terms of its real in-phase and quadrature components 
according to 

n(t) - nc(t) + ins(t) (4) 

A sample of the complex envelope of the received waveform at time tj,; is there- 
fore given by 

Po exp (i ^0) * n(tk) = P0 cos (^0) . r.c (t,v) * i [P0 sin (^ H ns(tk)] 

= Xk + i Yk = \ exP (i 0 K)   > 
(5) 

■     - .   . ■A-rfi^iii 
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where   Xj,   is the k-th in-phase sample ;ind  y^  is the k-ch quadrature sample of 
the received waveform.   Alternately,    R^  is the k-th amplitude sample and 0^ 
is the k-th phase sample.   For   M   samples available,   1 < k ^ M, the problem 
we will address is how   JR^j i   ox   j0^ i    or both should be processed for 
near-optimum detection capability when different degrees of knowledge of signal 
phase  ^    and frequency fc arc available, and, in some cases, for small SNR. 

The complex sample   x^ • iyK   can also be considered to be the output of 
the particular frequency bin at   fo  of a fast Fourier transform (FFT) applied 
directly to the received waveform prior to any prefiltering.   The time between 
samples is then the time interval over which the FFT is conducted.  The follow- 
ing investigation is concerned with the way in which the sequence of FFT outputs 
should be combined and how well the various combinations perform. 

Seven processors that will  be investigated for their detection capabilities 
are listed in table 1.  Tie decision variable for each is compared with a thresh- 
old.  If the threshold is exceedeo, a signal is declared present; otherwise it is 
declared absent.   (For Processor VI, the reverse comparison is made. ) The 
derivations of the processors in table 1 are given in appendix A, along with the 
assumptions necessary to make each valid or optimal. 

Table 1. Seven Signal Processors for Known Sigmd Frequency 

Processor 
Knowledge Assumed About 

Signal Phase   ^ 
Samples Used Decision Variable 

I Known 
Amplitudes IV 
Phases   0^ 

M                       | 

Rele-'^o J-jiyr ökU 

1          n Constant but Unknown 
Amplitudes R^ 
Phases   9k 

M 
E  %ei9k 

k=l 

III Independent Phases Amplitudes It, 
M       „                              | 

IV Known Phases   Oj, Reje-^o    £ el94        ' 
{,            k=l         )        1 

i        v Constant but Unkm wn Phases   9^ 
1   M 

£ ei9k 
1 k - 1 

VI Constant but  I'nkn iwn Phases   9 
Mk=i \Mki / 

VII Constant but Unknown Phases   g Rej f;   exp(19k-i9k_1|J 

täSStä Sättg;.. 
■     ■ .        _ 
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The first processor in table 1 assumes knowledge of signal phase \p0 anr' uses 
both amplitude and phase samples JHi.}. |öj,| .nits decision-malviKg proeeJure. 
It is the optimum phase-coherent processor; no other is as effective using the 
available samples. A geometrical interpretation cf its decision variable is that 
an M-step random walk in the complex plane is taken, the k-th step is of length 
R[. and angle 0^, and the resultant sum is rotated by the known amount, - 4/0 

radians, before its real projection is compared with a threshold. 

Processor 11 does not assume knowlrjge of signal phase   I/'Q-   ln this ease the 
length of the total random walk is  compared with a threshold.   L is seen that if 
| 01.}   tend to cluster around a particular value  (^o),   the length of jie total walk 
will be large and signal deteetability vlll be enhanced.  It is shown in appendix A 
that Processor II is optimum when the a priori probability density function (PDF) 
of sigi al phase is uniform over 2n radians.  Also,  Processor II results when the 
maximum likelihood (ML) estimate of signal phase is used, instead, in a genera'- 
izeu likelihood ratio (LR) test. Thus two different approaches to the treatment of 
signal phase yield the same processor. 

In case III we assume that signal phase is independent every sample. The opti- 
mum processor in this case is the inl0   processor (see appendix A or reference 
2), An approximation to this processor for small SNR is afforded by the decision 
variable in table 1; it discards all phase samph. information. An advantage of the 
approximation is that the decision variable is independent of   P ,   whereas the 
j2nl0   processor requires knowledge of both P    and   a  for its realization.  Thus 
the approximation is uniformly most powerful with respect to   P . 

Both   j Ri. [   and   jg, |   were available for use by Processors I, II, and III for 
every sample instant. Since increased noise levels cause an increase in the value 
of the decision variable in these processors,  it is readily apparent that none of 
them can possibly be a CFAR receiver.   In contrast,    the last four processors 
shown in the table are icstricted to operating on phase samples only, and will pos- 
sess CFAR capability for a fixed Imown value of M, the number of samples.   For 
example, Processor IV-assumes knowledge of signal phase   xp , and its decision 
variable is identical to that of Processor I, except that the length of each individual 
random walk is equal to unity. It is shown in appendix A that, for small SNR, Proc- 
essor IV is the optimum processor operating solely on phase samples; i. e. , no 
other processor restricted to employing only   jö, \   am do better for small SNR. 

Processor V does not require that ^0 be known, but does require that </'0 

be constant during all M samples. The resultant processor is identical to Proc- 
essor II except that the length of each individual random walk is again restricted 
to unity. It is shown in appendix A that Processor V is optimum when the a priori 
PDF of the signal phase is uniform, the SNR is small, and only phase samples are 
a/ailable for decision-making. Also, Processor V results when the SNR is small 
and the ML estimate of signal phase is used, instead,  in a generalized LR test. 

^äuaäiüi&ä^^ 
■    ■ 
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Processor VI attempts to characterize, mathematically, what happens when a 
human observes a phase-versus-time chait coastructed from [6^}. Specifically, 
Üie best horizontal line is fitted to the phase-time chart (for known signal frequency 
fy), such that the average squared-error over M samples is minimized. The re- 
maining scatter about the best straight line is used as a decision variable (see 
append! v A for derivations). Hie samples need not be equi-spar ,-din time. There 
is an ambiguity inherent in Processor VT because of the nonuniqueness of phases 
within multiples of 27r; this problem and methods of circumventing it are discussed 
in section 3. 

Processor VTI is a phase-difference processor that is not optimal in any sense. 
It is, however, a practical compromise that can be resorted to if the phase of the 
signal is expected to make an ao. apt change somewhere in the middle of the sequence 
of M samples, or if the phase drifts significantly over the total sequence length. 
An abrupt phase change drastically deteriorates the performance of all the other 
processors in table 1 (except Envelope-Processor HI) because the coherent addi- 
tion can become destructive rather than constructive. However, for Processor Vll, 
an abrupt phase change merely causes several noisy samples in the coherent addi- 
tion. Also, the samples need not be c ;'ii-spaced in time. Processor VII has dis- 
advantages that will become evident when its detection capability is investigated 
in section 3. 

The derivations for Processors I through V that are presented in appendix A 
assume that the additive noise is Gaussian and that the samples are statistically 
independent. However, these processors can be derived without either of the re- 
strictive assumptions, namely, by derivations that are based on a geometric 
interpretation of the envelope and phase samples as presented in appendix B. 

Derivations of the detection and falsealarmj robabilities for the sevenproc- 
essors are given in appencüxC. Where possible, exact results, or a method cap- 
able of leading to an exact result, are presented.  Ir oome cases, only the false 
alarm probability can be calculated exactly. In other cases, approximations to 
the detection and false alarm probabilities are given, i or Processor VII, a more 
general technique than is indicnted in table 1 is also investigated (see (C-86)). 

2. 2   UNKNOWN SIGNAL FREQUENCY 

For unknown signal  konuency,   the performance of all the processors 
in table 1 (except for Processor III + ) will be degraded.   The received signal 

♦Actually, as the unknown '"requency shift of the signal is made large enough 
to decrease the signal output of tue NBF in the receiver prtorocessor, P    de- 
creases and performance degrades. However, our expressions fo: detectability 
will be in terms of P    itself,  rather than in terms of the signal tunplitude in 
the medium, the NBF transfer-function, and the precise frequency ,ihift. 

Müaaai .... ■ süsai, '^®itö&tömmii JääJäaiÜffittm 
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waveform is now 

s(t)     Po cos (2 7r(fo+ fd)t-f  ^0),  t  r T, (G) 

where   t',   is the unknown (Doppler) shift. Although we again assume that P0 is 
known, it will not be needed in any of the tests to be considered. Since it is un- 
realistic to assume that signal phase   ^    would be known at some time instant, 
while the frequency  f, is unknown, there are no analogs of Processors I and IV 
here. Also, since the performance of Processor III is not affected* by a frequency 
shift, we need not reconsider it here. 

The four processors of interest here are listed in bible 2 and their deriva- 
tions are presented in appendix A.  If the decision variable exceeds a threshold, 
a signal is declared present; otherwise the signal is declared absent.    (For 
Processor VI, the reverse comparison is made.) 

Table 2.   Four Signal Processors for Unknown Signal Frequency 

Processor 

VI 

Knowledge Assumed About 
Signal Phase  if, 

Constant bit Unknown 

Constant but Unknown 

Constant but Unknown 

VII Constant but Unknown 

Samples 
Used 

Amplitudes R^ 
Phases  0^ 

Phases  8 k 

Phases  g 

Decision Variable 

M 
ma: 

f 
S Rkexp(i9k-i2Tftk) 

k=l 

I  M 
maxl "^ f\ 1.   exp(iö,   -i2nitk) 

1   |k- 1  

- I>k    - 2X 
M k - 1        \M k    1 

12    /l     ^1/      M^2 

Phases   9^ 5] exj) (i9k - ^8.,) 

k= 2 

For Processor II, the complex random walk    1^. exp(iÖ}t) is "unwound" by 
all possible rates of rotating vectors (see table 2), and the largest distance walk 
is compared with a threshold. It is shown in appendix A that if the a priori PDF of 
signal phase is um'orm and the ML estimate of signal frequency is employed, the 
resultant test is as given in table 2.  Alternatively, the appendix shows that if ML 
estimates are used for both signal phase and frequency, the resultant generalized 
LR test is identical. Thus two approaches to signal phase yield the same processor, 
and assumptions of small SNR are not required. 

♦See the footnote on page (5. 

 _.. ^  hüWfeituit»^ .      • .., V,i. 
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The physical interpretation of the decision variable for Processor Vin table 2 
is identical to that foi Processor II except that the length of each component of the 
random walk is forced to-be unity. It is shown ui appendix A that this processor 
results t'"r small SNR when either (1) the a priori PDF of signal phase is uniform 
and the ML estimate of signal frequency is usedor (2) ML estimatesof both sig- 
nai phase and frequency are used. 

Processor VI results when the best straight line is fitted to equi-spacedphase 
samples, suchthat the average squared-error over M samples is minimized. It is 
felt that this test approximates the way a human observer somehow pieces together 
the "barber pole" effect caused by an unknown frequency when confronted with a 
phase chart history limited to the (-*,*■) range, hi practice, there is a real prob- 
lem when attemptin."- to apply the decision variable in table 2 to automatic data 
processing, because a computed phase sample 9u will lie in the (-T?T) range un- 
less a special algorithm is used to "unwind" the phase samples along a straight 
line.  Also, unless there is human intervention, all algorithms willoccassionally 
yield permanent spurious ^Zir jumps in phase that give an unnecessarily large value 
to the decision variable (scatter) and can lead to erroneous signal-absent statements. 
If the   jö|c[ could be unwound properly, the performance of Processor VI for un- 
known signal frequency would be identical to that of Processor VI forknown signal 
frequency and, therefore, independent* of the exaci, frequency sMft, fc|. Accordingly, 
no detailed operating characteristics will be given for this processor in section 3. 

Processor VII is a phase-difference processor. For equi-spaced samples and 
unknown signal frequency, the complex vector exp (if ^ - iö|._-) tends to cluster 
around an unknown phase for large SNR. The length of the total walk is used as a 
decision variable,  since the direction of walk is not known a priori. The perform- 
ance of Processor VII is independent* of the exact frequency shift fj, which is can- 
celed out of the decision variable (see (A-36) through (A-40)). However, the per- 
formance is poorer than that for the comparable processor forknown signal fre- 
quency.  The performance capability of Processor VII (see table 2) is given in 
section .'!. 

The derivations in appendix A for Processors II and V (see table 2) assume 
that the additive noise is Gaussian and that the samples are statistically indepen- 
dent.  The resulting processors are derived in appendix B without either of these 
restrictive assumptions via a geometrical interpretation. 

According to the above discussion, performance results for Processors II, 
V, and Vn in table 2 will be presented in section 3. Analytical derivations of 
detection and false alarm probabilities for Processors n and V are too difficult 
and have not been attempted. Analytical results for the performance capability 
of Processor VII are presented in appendix C, where, in fact, a processor of 
a more general form is investigated (see (C-133)). 

"See the footnote on page G. 
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3.    RESULTS 

3. 1   KNOWN SIGNAL FREQUENCY 

Receiver operating characteristics (ROCs) for the processors discussed in 
the previous section were determined by computer simulation using 10, 000 inde- 
pendent trials. Although the ROCs for Processors I, II, and III arc available in 
the literature (e. g. , in references 3 and 5), they are included in this simulation 
for purposes of determining the credibility and accuracy of the simu' .tion ap- 
proach.   Detai s of the simulation used are presented in appendix D. 

In the following discussion, the number of samples,   M,   is fixed at 25 and 
comparisons between processors are made on this bat.is.   For smaller values 
of  M   of interest, the program in appendix D can be cuitably modified.   For 
larger values of M, the computer time and storage increase and the analytical 
derivations in appendix C can be used, instead; in particular, the approximations 
in appendix C improve for large M. 

In figure 1A, the ROC for Processor I is presented for values of 
P 

m — — 

ranging from 0 to . 8.  The SNR corresponding to (7) is, in decibels, 

'p2/9 1/2\ 
10 log I —j   = 20 log (mi - 3 

(7) 

(8) 

This is the SNR it the preprocessor oatput, prior to recombination according 
to table 1. In the ."ollowing, PF is the false alarm probability and P^ is th-' 
detection probability. 

■ 

i 

The (0, . 1) range for false alarm probability,    Pp,   is expanded in 
figure IB to clearly show the ROC for small   Pp   in the neighborhood of .01. 
As a check of the a jciracy of the simulation approach, several exact values of 
performance have b^en added, as given by (C-5) in appendix C, and are denoted 
by Xs in figure 1.   T'.uy are seen to virtually coincide with the simulated results. 

u 

The ROC for Processor II is presented in figure 2. Again, several exact 
values (from (C-9)) have been entered as Xs, and the agreement is very good 
over a wide range of values of Pp. In comparison with Processor I, the de- 
gree of degradation suffered by Processor II, which lacks knowledge of signal 
phase ^0. depends on the exact operating point on the ROC. For example, the 
point (Pp, PD) = (. 01, . 2) requires m = . 3 for Processor I, but m = . 4 for 
Processor II, which is a 20 log (. 4/. 5) = 2 5 dB degradation.   Projessor n 
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suffers a certain amount of small-signal suppression; i. e. ,   detejion of weak 
signals (m « 1) is significantly impaired in comparison with Processor 1.  This 
is characteristic of ail processors that do not have knowledge of signal phase 

The ROC for Processor UI v. ^iven in figure 3.   It is seen that it suffers 
even greater small-signal suppiessirn; e.g.,   a value of m = , 78 is required 
to realize  he (. 01, . 2) operating point, which is 8. 3 dB poorer than Processor I. 
As a comparison witM figure 3, the ROC lor the optimum   J2ul0  processor, 
(A-15), was also computed tor the same set ol pa ^ameters; the results were 
imperceptibly different from figure 3 and, thereiorc, are not presented.  Ex- 
tensive numerical results for the performance of Processor III are available 
in reference 5. 

The ROC for the first of the phase processors, IV, is given in figure 4.  Its 
performance is slightly poorer than Processor I, which used both amplitude and 
phase samples. For example the (. 1, .9) operating point is realized with m = . 52 
for Processor I, but requires m = . 58 for Processor IV; this is a difference of 
only . 95 dB.  It is shown in appendix C (equations (C-40) and (C-41) et seq. ) that 
for large M and small m.   Processor IV is 10 log (4/T ) - 1. 05 dB poorer than 
Processor L  Thus loss of amplitude information does not cause a great loss in 
detection capability; rather, the information in the phase samples is the domi- 
nant contributing factor to signal detection.  Since Processor IV uses knowledge 
of signal phase   ^0,   there is no small-sign"! suppression; this applies even 
though    JRv}   have been discarded. 

Processor V does not assume knowledge of signal phase   ^Q,   whereas 
Processor IV does. The ROC for V is depicted in figure 5.  When figures 2 and 
5 are compared, it is apparent that Processor V's performance capability is 
very jimilar to that of II, which haa amplitude information available in addition 
to the phase information. For example, operating point (. 1, . 9) requires m - . G5 
for Processor II and m = . 74 for Processor V — a difference of 1. 1 dB.   Equa- 
tions (C-68) and (C-69) et seq. show that for large M and small m, Processor V 
is 1. 05 dB poorer than Processor II.    Thus, once again, loss of amplitude infor- 
mation causes a loss of 1. 05 dB in detectability in one limiting case. Notice that 
Processors I, 11, IV, and V all use the phase samples in the same basic way, 
i. e. , according to the addition of complex vectors   exp (10^) • 

Processor VI makes an entirely different use of the phase samples,   and, 
because it does, the inherent ambiguity in phase causes some problems in auto- 
matic processing.   To illustrate the problem,   suppose the true signal phase 
I/'Q = 0 and |öu}    are defined in the (-*-, v) band.  Then, for the decision variable 

10 
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in table 1, the corresponding ROC for in ~ 0 (. 1) . 4 is presented in figure 6A. 
This ROC is poorer* :han that in figure 4A; this result agrees with the fact that 
Processor IV is the optimum processor for small m, phase samples alone, and 
known signal pl.ase.  On the other hand, the ROC in figure 6A is noticeably better 
than that in figure 5A because Processor \1 assumed that   ^   = 0, whereas 
Processor V does not use signal phase knowledge (although it does use jö^l 
optimally for small m, otherwise).  Notice the absence of small-signal suppression 
in figure GA,  since  i/-0   is known and used. 

In an attempt to determine the effect of different signal phases,   [p0,   on the 
performance of Processor VI, the decision rule in table 1 was applied in the 
case where    \p0 - */2 and    jö^j were, again, in the (-IT, TT) hand  The resulting 
ROC in figure 6B suffers notable degradation because   jö^j   with values in the 
(-TT, -jr/2) band heavily bias the average phase estimate,  (A-33), away from 
the true value    i/'o = r/l.    Then the scatter (see table 1 or (A-34)) about the 
average phase estimate is large and decisions made about signal absence are 
fre|uently erroneous.  Yet, jö^j   near-T    should not be allowed to contribute 
^'u,h a large effect since, in reality, each value   0 ^ ' 2t   is quite near the true 
value   jr/2; i. e. , the (- T/2, 3 n-/2) band would be the ideal interval in which to 
define each   öj^    when    I/'Q =  *■/2.    But since the true signal phase will not be 
known in practice, the band to choose a priori is unknown.   The problem becomes 
magnified when    I/'Q   is allowed to sweep out a full 'lv   ••ange in the 10, 000 trials 
and band (-TT, TT)   is retained for j^k}.    The resultant HOC in figure GC inchoates 
that,  for certain ranges of  Pp,   the processor is poorer than a random choice. 

A possible solution to the automatic processing problem here is to define 
each   9^, simultaneously in several 2«-   bands, and compute the scatter that 
has a minimum value (in all bands considered) as the decision variable.  Ideally, 
there should be a continuum of bands (- TT t- v, T ( v), where   v   ranges contin- 
uously over a 2 7r   interval, but, since this is impractical,  a few well-chosen 
values for the bands should be considered.   In figure 6D, bands (-T, T) and (0, 2?r) 
were both used as   iiQ    swept out a full 2*-   range in the 10,000 trials.    The im- 
provement afforded by the addition of band (0, Iv)   is marked (compare figures 
6D and 6C).   In fact, for small m, the ROC in figure 6D is almost as good as that 
in figure 5A for the optimum phase processor without knowledge of signal phase 

+ In (C-83) et seq.  it is shown that  Processor VT is  .34 dB poorer than 
Processor IV for large M and small SNR m.   This figure of . 34 dB need not 
hold true over the entire ROC, however; in fact, since Processor IV is optimum 
only for small m.  Processor VI with known   i/^   could conceivably outperform 
Processor IV for larger m. 

11 
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i0. Probablj-, use of the three bands (-5 T/3, T/3), (-T, TT), and (-ff/3, 57r/3), 
with cen' s at -2ir/3, C, and 27r/3, respectively, would produce a ROC that 
is very close to that in tipire 5A; however, this is not pursued here. 

Another possible solution attempted was to "unwind" the successive phase 
samples   öj,    So» 9yi   such that    j ^k _ ^k-i    £«"; i. e. , the phase sam- 
ples were allowed to drift to whatever value that was necessary, provided chat 
adjacent phase changes were never more than   ir  radians.  Then, ti:0 best tilted 
straight line was fitted through the data and the remaining scatter was used as a 
decision variable (see {A-ü2) et seq. ); the resulting ROC in figure r>E is totally 
inadequate. 

The above discussion has dealt with an attempt to employ automatic data 
processing for variations of Processor VI.   If, instead, a human jbserves a 
phase chart of  6^,    02»  •••   ,   Syi   versus time, limited, perhaps, to the (-7r,rr) 
band, he will probably piece together the "barber pole" effect or notice clusters 
of phase samples about some constant nonzero value, and will be able to make 
accurate decisions about signal presence, even when   I/'Q   is near + ir.   (Two clus- 
ters would be observed for   i/^  near +T  or for ^   near -r.) It is not known 
how close the human can come to the optimum performance indicated in figure 
5A; however, the similarity between figures 5A and 6D for a very simple deci- 
sion rule and two bands, leads to the conjecture that human performance should 
be fairly close to that shown in figure 5A. 

A phase-difference processor for known signal frequency, whLa is a more 
general form of Processor VII than is shown in table 2, will be considered here. 
Specifically, the decision variable for this processor is a weighted sum of phase- 
difference vectors: 

(   M 

Re< E     4   <-]  exp(iflk 
lk-2 

iök-l)> 
(9) 

The reason for the weighting power  ß   is that, as has been observed above, am- 
plitude weighting does improve performance somewhat (compare I versus IV and 
II versus V).   Both exact and approximate detailed analyses of (9) in terms of 
PQ and Pp   are presented in appendix C for general   ß. 

The ROCs for   /J     0, . 5, and 1, are presented in figures JA, 7B, and 7C, 
respectively.  These figures show improved performance as   ß   increases from 
0 to 1.  In fact, in appendix C ((C-131) et seq.)    it is shown that the best value 
of ß, for large M and small m, is unity.   Also, the loss in detectability at ß - Q 
versus   ß = 1   for Processor VII is 1. 05 dB under these conditions; once again, 
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two processors that differ only in the way they use amplitude information differ 
by 1. 05 dB in performance fur large M and small m. 

It must also be noted in figure 7 that the increment in   m ( = P0/
0') is • 2, not 

. 1 as in all of the previous figures.  Thus, the phase-difference processor (for 
any weighting M) is obviously poorer in performance than the optimum phase 
processor,  V,  which is without knowledge of signal phase \p .    In fact, (C-131) 
shows the familial-   m'^-.dependence of   P^; thus, the phase-difference processor 
suffers a small-signal suppression effect.   For larger m, a direct comparison of 
HOCs is necessary.   For example, although the operating point (. 1, . 78) requires 
m     1 for Processor VII with   M     0,  Processor V requires only   m = , G3 — a 
difference of 4 dB.  On the other hand, as was noted in the Introduction, the phase- 
difference processor can tolerate an abrupt signal-phase jump without disastrous 
effects, whereas the other processcrs would all be very adversely affected. 

Another way of presenting the operating characteristics of a processor, 
which can be particularly useful for comparison of systems for small values of 
Pp, is to plot   Pp versus   m  on pi-obability paper, with   PF as a parameter 
(e. g. , see reference 3, figures IV. 1 and V. 2).  We shall call these plots detec- 
tion characteristics (DC), in orderte distinguish them from ROCs, and present 
them for several of the processors, as determined by both simulation and ana- 
lytical methods.  This approach will afford corroboration of the analytical results, 
as well as an indication ot the adequacy and accuracy of large-M approximations. 
It will then be possible to use the analytical results for other values of M with 
assurance of theL" accuracy and applicability. 

The DCs for Processors I,  II, and III are available in references 3 and 5. 
The DC for Processor IV is presented in figure 8, where the solid curve repre- 
sents the approximate analytical result in (C-40), with exact threshold values as 
given in table C-l.  The superposed Xs denote the results of the simulation de- 
scribed above.   The analytical result is expected to be in greater error* for small 
m than for large m.    The agreement with the simulation results is quite good; 
the standard deviations of the results are considered in appendix D.   For small 
PF, approximation (C-40) is not as accurate, especially for small m; in fact, 
the limiting value  Pp     10"^  is not realized at m = 0 by this approximation, 
even though exact thresholds were used.  The simulation results for Pp -; 10 
are not shown on figure 9 because 10,000 trials do not constitute an adequate 
base for estimation. 

*The  reason for this behavior is that the individual random variables in 
(C-I9) are more nearly Gaussian for large m than for small m.    In fact,   as 
m — 0 in (C-21),  the PDF of   s   has cusps at + 1. 
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The DC for   Processor V is (riven In fltfuru 9,   where the analytical  result, 
(C-<)3), is arawn as a solid curve;  exact threshold values piven by table C-2 
were used.   The superposed  Xs  a^ain denote simulation  results and it can be 
seen that disa^rcenient is irreales; lor sin nil   Pj.'   and small m;   liere the approx- 
imation frives an o/erestlmale of atiUlnable performance.  The characteristie 
small-signal suppression ot proeeHHt.rH niieridini', without knowledge of signal 
phase   i//0,    as exhibited by the horl/.oilul slope :il   m     o,  is apparent. 

A detection character!«tic is not pre.U'iited lor I'roi-essor VI because,   as 
described above, multiple band:.  'Acre no! iittempled lor- the definition of jfl^j. 
However, it is antielputet!  ihn,   lor  Ihr   IVIIHOIIH  discussed above.   Hie  DC  in 
figure 9 would l)e a good appm.\ii,.all!in Lo !aii! lor I'roceHHor VI. 

Three DCs for I'roceH.sor \'|| Im  wcdghllnn eoiiHlimi   (j     0,  ,5,  and 1,  re- 
spectively,  are presented in figure   10  (sei' ('()).     IT.e Ihi'esholds   for   /J     0 and 
H- 1,  from  tables C-.'i and ('• I, ar.' exacl,  und Ihr  Ihresholds  for  ß     ,5 are 
determined from (C-127).   Tlie approximate   I'D,    as determined from (C-129), 
agrees well with the simulation results lor ail three eases of weighting constant 
M considered, except in figure IOC for  /.'     I   and small   IV..    The analytical 
results in figure IOC for   1'^     10"'^  and 10"'   are pessinustie estimates of 
performance for small m, but are apparently oplhnlstie estimates for larger m. 
The reason for the poorer quality of the approximation to   P,..   for small  Pp in 
figure IOC is that, the summation random variables in (!)) are far from Gaussian 
for  fi = 1 and large amplitudes.  On the other hand, the extremely good agree- 
ment indicated in figure 10B is fortuitous; of course, the reason the approxima- 
tion (C-129) is perfect at   m     0   is that approximate thresholds, as determined 
by (C-T29) itself, have been used. 

3. 2   UNKNOWN SIGNAL FREQUENCY 

The ROCs for Processors 11, V, and VII in table 2 will be given, in keeping 
with the discussion in section 2. Again, 10,000 independent trials are taken and 
M = 25. 

Suppose the complex samples   JR^exp {10^)1   arc taken every   A seconds; 
i. e. , suppose   t^   = k A   in table 2.  This time interval corresponds to an NBF 
of width l/A   HZ in the receiver preprocessor (or to the time between FFT out- 
puts), as described in section 2.  Thus the complete preprocesso :• might consist 
of a bank of NBFs (or a subset of the FFT outputs) extending over some selected 
frequency band.   For a collection of M samples, the total observation interval is 
MA  seconds; the fundamental frequency resolution possible o^rcr this total time 
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interval is (MA)-1 Wz.  Therefore,  if we expect the decision rules in table 2 tc 
yield near-optimum results, the search in f must be conducted to within at least 
(2MA)"1 Hz. 

Let the actual frequency search increment be (NA)"-'-, where  N > 2M .  Then 
for   f     fn E n/(NA), the decision rule for Processor II in table 2 takes the ap- 
proximate form 

M | 
Y,   Rk exp (iök) exp H27rkn/N)j , (10) max 

n k    1 

where the search over   n   covers only the range of expected frequencies.  The 
two particular cases we consider are (1) a "track" situation where the signal 
frequency is known almost exactly and (2) a "search" situation where the fre- 
qaency uncertainty is approximately l/A   Hz.   (For greater uncertainties, an- 
o her NBF in the preprocessor bank, or a different frequency bin in the FFT 
output, would pick up the signal.) Mathematically, these two cases correspond 
to    |n j £ 1 and   ; n | v_ N/2, respectively,,  in (10). 

The summation in (10) is immediately recognized as an N-point FFT of the 
M nonzero complex samples {Rk exp (iflk)}.  Thus,  (10) dictates a comparison of 
the maximum magnitude of the FFT (of the time sequence   | Rk exp (iflk^l v w^ 
a threshold for decisions about signal presence.  A 5   N becomes very large, (10) 
approaches the continuous rule quoted in table 2.   i'owever, computation of (10) 
is unnecessarily time-consuming if N is selected too large; also, performance 
capability saturates for N   ■ 2M.   We will consider   N    64 here, because of the 
speed of the FFT for powers of 2. 

The ROC for Processor II in the track situation is depicted in figure 11; it 
is slightly poorer than in figure 2, which shows the corresponding ROC for known 
signal frequency.   The ROC tor Processor II in the search mode is illustrated in 
figure 12.  At operating point (. 01, . ()2),  for example, approximately 1. 8 dB 
more SMR is required in the search mode than in the track mode.   The difference 
is much greater for smaller m, where the lack of knowledge of signal frequency 
causes a significant degradation in performance. 

For Processor V in table 2, the only change in (10) is to replace   RK   by 
unity; then all of the above comments apply directly.  The resultant ROC is dis- 
'■"layed in figure 1C for the track mode and in figure 14 for the search mode. 
Comparison of figure 13 (unknown signal frequency) with figure 5 (known signal 
frequency) reveals a slight degradation.  The degrading effect of the wider search 
procedure is evident in figure 1 1. 
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A phase-difference processor for ukiknown sigr.al frequency,   which is a 
more general form of Processor VII than is  shown in table 2,   will be consid- 
ered here.   Specifically, the decision variable is a sveighted sum of phase-dif- 
ference vectors: 

M 
E    K  V-l   expa^-i»^) 

k   2 
(11) 

Both exact and approximate detailed analyses of vll) in terms of   PQ   and   Pp 
are presented in appendix C for general  M. 

The ROCs for  ,'J     0, . 5, and l,are presented in figures 15A,  15ß, and 
15C,  respectively.   These figures show improved performance as  M   increases 
from 0 to 1.   Equation (C-177) and table C-5 in appenfiix C sliow that the best 
value of M, for large M and small m ,   is unity.    Also, the loss in detectability 
at   n     0 versus   n     1   is 1. 05 dB under these coaditions; i. e. , when amplitude 
information i:; discarded in this prnc.S'.or,   1. 05 dB is lost for large M and small 
m.   The ROC for  M     1. 5 vvas also computed and was found to be virtually iden- 
tical to that for   ,a     1; however, the ROC for M    2 was slightly poorer than the 
ROC for  ii     1.   (Neither of these eases is presented in this report. ) 

It '.s important to notice that the increment in   rr.   shown in figure 15 is . 2, 
not . 1.    Thus the performance of the phase-difference processor,  VII, for un- 
known signal frequency is extremely poor until   m   approaches unity; i. e. , the 
SNR at the preprocessor output must be approximately -3 dB before adequate 
performance obtains (see (8)).   (1'he degradation of Processor VTI for known sig- 
nal frequency (see figure 7) was not as marked for small m. ) In (C-177), the 
approximate detection probability is shown to have en  m^-dependence rather 
than the m-dependence of Processors II and V.  Thus, in addition to the small- 
signal suppression effect caused by the lack of knowledge of signal phase \p0, 
the phase-diffeience processor for unknown signal frequency suffers further 
degradation for small m for all values of weighting constant  M   in (11). 

Since we were unable to derive analytic results for the detection probabili ,ies 
of Processors II and V for unknown signal frequency, no DCs are presented for 
these two cases.   However, vse are able to analyze Processor VR for unknown 
frequency; the resultant DCs for   M     0,  . 5,  and 1 are presented in figures KiA, 
16B, and 16C,  respectively.   The thresholds used for   M    0 and   n     1 are exact 
and are given in tables C-(i and C-7,   respectively.   The thresholds used for 
M ^ . 5 were determined from approximation (C-173). 

IG 
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The pronounced flatness of the DCs for m near zero is expected in accord- 
ance with the suppression effect discussed above. Thus, for example, even at 
m     . 5, the detection probability in figure 1GA has only reached . 15 forthe curve 
labeled   P F 10 1 This behavior is exhibited independently of the value of ju. 

The poorer quality of the approximation to P-n in figure 16C for small Pp 
is the result of the fact that the summation random variables in (11) are far from 
Gaussian for M 1 and large amplitudes. The analytic results are pessimistic 
estimates of performance for small m, but optimistic for larger m. 

4.    DISCUSSION 

The failure to use amplitude information to detect a sine wave in noise causes 
a degradation in performance of about 1 dB for small SNR and large M if the phase 
information is properly used  This conclusion is based upon a comparison of the 
following four pairs of processors: 

a. Processor I, known signal frequency, versus Processor IV, known signal 
frequency, 

b. Processor II, known signal frequency, versus Processor V, known signal 
frequency; 

c. Processor VTJ, known signal frequency,   M - 1 versus   u     0; and 

d. Processor VII,  unknown signal frequency,    M  
Z
 1 versus   ß - 0. 

On the other hand, discarding phase information can lead to severe degradation, 
as the ROC for Processor III attests. 

All processors that lack knowledge of sigmü phase suffer small-signal sup- 
pression,  regardless of their use of amplitude and phase samples. However, for 
larger SNR, such that useful detection probabilities  result, the degradation is 
often insignificant.   The  suppression effect is  more pronounced for the phase- 
difference processors and is, in fact, severe for unknown signal frequency. 

rhe phase processors have CFAR capability; i. e. , a threshold can be fixed 
to realize a prescribed   Pp   for a given value (    M,  regardless of the absolute 
noise level.  The threshold for many of the pr jessors can be determined by 
means of the exact formul ts in appendix C. 

Approximations to system detection capability derived in appendix C can be 
fruitfully employed to evaluate processor performance for other values of M and 
SNR   However,   for small values of M or ' ery small values of Pp, the approxi- 
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mations are less accurate. A guide as to when approximations are valid is offered 
by the DCs presented in this report. When simulation becomes expensive, in 
terms of time and storage for larger M, analytical results are better and are 
the recommended approach to system evaluation. 

The investigation here has assumed that only one sine wave is present.  If a 
second sine wave, separated in frequency by more than the width of an NBF in 
the preprocessor, is present, the desired tone will dominate the NBF output and 
the current results will apply. Similarly, if the preprocessor consists of a se- 
quence of FFTs,  separation in frequency of the sine waves by more than the in- 
verse of the time duration used in an individual FFT will not cause problems. 
However, if the two tones lie within the same NBF width and are of comparable 
strergth, phase-processing can suffer severely because measurements of phase 
are affected by both sine waves and will vary greatly with time.  In this situation, 
either narrower filters should be used or amplitude processing, such as Proc- 
essor IE, should be used. This situation should be investigated more fully, prob- 
ably via simulation. 
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Figure 1A.  Receiver Operating Characteristic for   Pp < 1 

Figure IB.  Receiver Operating Characteristic for   Pv 1 • l 

Figure 1.  Receiver Operating Characteristic for Processor I, 
Known Signal Frequency 
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Figure 2A.   Receiver Operating Characteristic for PF < 1 

Figure 2B.    Receiver Operating Characteristic for PF < . 1 

Figure 2.  Receiver Operating Characteristic for Processor II, 
ICnown Signal Frequency 
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Figure 3A.    Receiver Operating Characteristic lor  P-p < 1 

Figure 3B.    Receiver Operating Characteristic for   Pp _< ■ 1 

Figure 3.   Receiver Operating Characteristic for Processor III, 
Known Signal Frequency 
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Figure 4A.    Receiver Operating Characteristic for   PF < * 

Figure 4B.    Receiver Operating Characteristic for   Pp < • 1 
Figure 4.   Receiver Operating Characteristic for Processor IV, 

Known Signal Frequency 

22 

amm^^^^^^.^^. 



■!ip*Vir WM^m^W^WWmW^1'^^ •-S^BST>^?5^3T?S!7!WW5^^ 

TR 4529 

Figure 5A.    Receiver Operating Characteristic for   P^ <_ 1 

Figure 5B.    Receiver Operating Characteristic for   P„ < . 1 

Figure 5.    Receiver Operating Characteristic for Processor V, 
Known Signal Frequency 
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Figure 6A.    Receiver Operating Characteristic 
for  ^   = 0; Band (-*■, TT) 

Figure HB.    Receiver Operating Characteristic 
for  ipQ = 'r/2; Band (-T,I:) 

Figure 6.    Receiver Operating Characteristic for Processor VI, 
Known Signal Frequency 
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Figure 6C.    Receiver Operatiug Characteristic 
for   \},0 t (0, 2ir); Band (- »r, )r) 

Figure 6D.    Receiver Operating Characteristic 
for  \P0 t (0,2jr); Bands (-ff.ir) and (0,2ir) 

Figure 6 (Cont d).    Receiver Operating Characteristic for Processor VI, 
Known Signal Frequency 
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Figure 6E.   Receiver Operating Characteristic 
for \j/Q t (0,2*-); Best Tilted Line 

Figure 6 (Cont'd).    Receiver Operating Characteristic for Processor VI, 
Known Signal Frequency 
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Figure 7 A.   M = 0 

Figure 7B.   ß = .5 

Figure 7.   Receiver Operating Characteristic for Processor VII, 
Known Signal Frequency 
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Figure 7C.    M = 1 

Figure 7 (Cont'd).   Pteceiver Operating Characteristic for Processor VII, 
Known Signal Frequency 
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Figure 8.   Detection Characteristic for Processor IV, Known Signal Frequency 
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Figure 9.  Detection Characteristic for Processor V, Known Signal Frequency 
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.9999 

Figure 10A.    M = 0 

Figure 10.   Detection Characteristic for Processor VU, Known Signal Frequency 
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Figure lOB.    M = • 5 

Figure 10 (Cont'd).    Dcteetion Characteristic for Processor vn, 
Known Signal Frequency 
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Figure IOC.    M = 1 

Figure 10 (Cont'd).    Detection Characteristic for P;-ocossor VII, 
Known Signal Frequency 
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Figure 2 11A.    Receiver Oi^crating Characteristic for   Pp< 1 

Figure liB.    Receiver Operating Characteristic for  P    < .1 

Figure 11.   Receiver Operating Characteristic for Processor II, 
Unknown Signal Frequency; Track 
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Figure 12A.    Receiver Operating Characteristic for   VV<1 

Figure 12B.    Receiver Operating Characteristic for   P^ <. • 1 

Figure 12.    Receiver Operating Characteristic for Processor 11, 
Unknown Signal Frequency; Search 

35 

.      ;■•.:.     .-. l-.-.V.-li. 



P^!P?SP!frf$S?S5^^ 

TR 4529 

Figure 13A.    Receiver Operating Characteristic for   Pp£ 1 

Figure 13B.    Receiver Operating Characteristic for   Pp < .1 

Figure 13.    Receiver Operating Char .cteristic for Processor V, 
Unknown Signal Frequency; Track 
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Figure 14A.    Receiver Operating Characteristic for   PF< 1 

Figure 14B.    Receiver Operating Characteristic for   PF£ • 1 

Figure 14.    Receiver Operating Characteristic for Processor V, 
Unknown Signal Frequency; Search 
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Figure 15A.    M = 0 

Figure 15B.   M = . 5 

Figure 15.    Receiver Operating Characteristic for Processor VII, 
Unknown Signal Frequency 
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Figure 15C.    M-  1 

Figure 15 (Cont'd).    Receiver Operating Characteristic for 
Processor VII, Unknown Signal Frequency 
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Figure 16A.   M = 0 

Figure 16.    Detection Characteristic for Processor VII, 

Unknown Signal Frequency 
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Figure 1GB.   ß = .5 

Figure 16 (Cont'd).    Detection Characteristic for Processor VII, 
Unknown Signal Frequency 
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Figure 16C.    M = 1 

Figure 16 (Cont'd).    Detection Characteristic for Processor VTI, 
Unknown Signal Frequency 
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Appendix A 

DERIVATIONS OF PROCESSORS 

The processors will be discussed in the same order  in the appendixes as 
they were in the text.   Also;   the  appendixes are arranged such that particular 
processors have the same section number in each; e.g.,  Processor V for known 
signal frequency is treated in sections A. 1. 5, B.1.5, and C. 1.5. 

A.l   KNOWN SIGNAL FREQUENCY 

A.1.1   PROCESSOR I:   KNOWN SIGNAL 
PHASE; AMPLITUDE AND PHASE SAMPLES 

The   PDF   of random variables 

(A-l) 

(A- 

lor bignal present is available from (3), (4), and (5) as 

The PDF for signal absent, folj,^^ , is obtained from (A-2) by setting "^ = 0 . 
The likelihood ratio (LR) is the ratio of f, to po and can, using (5), be put 
in the form 

M?e 

Therefore, the   LR   test is* 

Tukr^V""]^ 

(A-3) 

(A-4) 

where threshold T   can be chosen for a specified false alarm probability. Notice 
that even though T0     is assumed known in (A-2), it is not used in the   LR   test 
(A-4). 

♦Satisfaction of the upper inequality leads to the decision that a signal is 
present; satisfaction of the lower inequality yields the decision that the signal 
is absent. 
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A. 1.2   PROCESSOR II: UNKNOWN SIGNAL PHASE; 
AMPLITUDE AND PHASE SAMPLES 

When the signal phase is unknown, the   PDF  of X  and £   for a hypothesized 
signal phase i>   is 

M   r 
)    i 

T'(M1*)=1T 2w'exf ., I 
(vFoco^y-^y-Tpsi» »y 

2(ra I (A-5) 

If the   a priori PDF   of |)   is uniform,  there follows 

f.bs,.i) = ^14 P. (Ml*) 

(?T<ra; 
ex _ .. Kcl 

x'+MF; 
2<r, 

(A-6) 

Liiiiv- 
The   PDF  for signal absent is obtained by setting 1^ = 0   in (A-6). The average 
LR   is then given by 

^(-^kOMl^l). (A-7) 

Therefore,  the   LR   test is 

Xe 
iek >T (A-8) 

Again, although T0    is assumed known in (A-5),  it is not used in the LR  test. 

Instead of assuming a uniform   PDF   for hypothesized phase  \p ,    it is pos- 
sible to choose ^   as the ML estimate in (A-5).  By rearranging (A-5) in the form 

T,(Ml^4 %^ + M*'t^%     {A 9) 

it is readily apparent that   -p,   is maximized by the   ML  estimate 

The maximum value of   p,   is then given by 

(A-10) 

(A-ll) 
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The generalized LR  is Ihe ratio of (A-11) lo  R, : 

ex r MS.  . -5. 
2r2 cr2 l^i61] (A-12) 

Tie generalized   LR   test is therefore identical to (A-8). Thus two different 
n-cuthods of treating signal phase yield the same processor (A-8). 

."..1.3   PROCESSOR III: INDEPENDENT SIGNAL 
PHASES; AMPLITUDE AND PHASE SAMPLES 

When all signal phases are independent from sample to sample, the  PDE of 
X   and   u   is given by a modified form of (A-2),  namely, 

2 5-» ?.(MliMT) w ^ 
KM    ^ 

(A-1.3) 

where   ^ = [vK--4Vj     's '•he set of M   random signal phases.   For uniform  PDFs 
of each ^K ,    there follows 

f.U^)-(i^H^-^r.U.ili:) 

(Z-mrT 
ey ? 

r ix+w* _ JLU. 

2(r* 
KM 

(A-14) 

The average   LR   follows readily from (A-14) as 

e*F(-f£)lT^.). 
and the  LR test becomes 

(A-15) 

(A-16) 

This test makes no use of phase samples   BK , but does depend on knowledge of 
To ;   however,  for small SNR (small Tj/cr),  (A-16) becomes 

K« I 
KK  $ -T ^K    <■ 

(A-17) 

For small SNR,  this approximate  LR  lest does not require knowledge of T0 . 
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A. 1.4   PROCESSOR IV: KNOWN SIGNAL PHASE; 
PHASE SAMPLES 

The  PDF of amplitude and phase samples T^   and 0^, is available from one 
term of (A-l) by transforming to polar coordinates: 

T'CMK> r^-r **? 
r- 

_^2?0Kcos(eK-C)+?o:' 
2^ -],V0,1^ <-Tr.       (A-18) 

The PDF of each    &k    is obtained by integrating over "RL : 

fM - i{e*p(- S) + ^™{(>*-^(-^™i0*-ty 
^•fo^-O (A-19) 

Now,  letting (,  *Cos(0H-^ for notational simplicity, we expand 

where 0( ) denotes terms the order of ( ) . 

On the other hand, consider the approximation to   ^(©h)  of the form 

This approximation has unit area and the expansion 

Now,  (A-20) and (A-22) are identical through order f^/o-,   and are almost equal 
through order Tt'/r' ,  'he factor 1  in (A-20) being replaced by ir/f    in (A-22). 
Therefore, we use the approximation (A-21) from this point on. Mariematically, 
we write 

?, (o - ^^[VfK] A(^). ^ »^ :^) i^ H^        (A-23) 

while remembering that (A-23) is also a good approximation to orderly /o 
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T.(fi)^«r^§c.]/]:(ifD> »">-?-, i^l<^ (A-24) 

The PDF of ^   for signal absent follows from (A-24) by setting 1^ = 0 . The LR, 
to order T0/v- ,  is therefore given by (A-24), with the factor fj!-n^M   absent. Thus, 
the LR test is 

T^ (A-25) 

and is independent of Tt    and   <r. Therefore, threshold T  can be selected once 
and for all to realize a specified false alarm probability, TF   . The value of T 
depends on only M   and   TF ,   and Processor IV is a C FAR receiver; i.e. ,  test 
(A-25) is uniformly most powerful wi'h respect to f^    and or ,  to order To/tr . 

A. 1.5   PROCESSOR V: UNKNOWN SIGNAL 
PHASE; PHASE SAMPLES 

The PDF of 6   for unknown signal phase is given bv (A-24), where ^   in 
Qj  is replaced by hypothesized angle »|J ; i.e. , 

to     order  ^>    leKl<-n-. 
(A-2n) 

We now express 
M r   _:J,  M       :Q~) 

(A-27) 

Then, for an a priori PDF of phase \|)   that is uniform over  2-rr, the PDF f.lg) 
is given by 

7m- 

w 
P \£r   '^K 

M 1» \ V 2 <r \tr\ ,)/4:(iiF-f)> o^i.w-. 
(A-28) 
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Since the PDF of ö   for signal absent is obtained from (A-28) by setting %- 0  , 
the average LR is given by (A-28) without the factor (2-rr)~M • Therefore the LR 
test is 

(A-29) 1 ^ T,   ■(!>   cder >■<)( 

If, instead of assuming a uniform PDF for ^ , we choose  ^  as the ML es- 
timate in (A-26), we find, using (A-27), that the ML estimate is 

(A-30) 

and the maximum value of  p,   is 

yM\)~ M*^ w- 
M ieh /x:^), 

(A-31) 

lewl<- 

The generalized LR is the ratio of {A-31) to   (jhr)      and, again, the generalized 
LR test is obviously (A-29). Thus, to order P0/cr ,   two different methods of 
treating signal phase yield the same processor. Test (A-29) can be designed for 
specified T*p   without knowledge of   Ti   or  tr. 

A. 1.6   PROCESSOR VI: UNKNOWN SIGNAL 
PHASE; FITTED PHASE SAMPLES 

Instead of aitempting to derive average LR or ML tests, we consider here 
a heuristic approach to detection. Specifically, tha M   successive   fB«]   are 
fitted by the best straight line such that the average squared-error is minimized. 
Then the resultant minimum error, or scatter,  is used as a decision variable. 
For small SNR, the phase samples would be widely scattered over a 2-rr   inter- 
val, whereas they would tend to cluster around the true signal phase for large 
SNR, yielding little scatter. Thus if the scatter is less than a threshold, we de- 
clare the signal present. 

For known frequency,  the best straight line has zero slope, as can be seen 
in (5). Therefore the average squared-error for hypothesized phase ^   is 

M 

E = iJr^;(öK-VT. (A-32) h K»l 

This is minimized by the choice 
tA 

M a 
K=l 

K   ; 
(A-33) 
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which is the average phase. The minimum error is therefore 

t-k^-(-trPl (A-34) 

When E<T, the signal is declared present. Test statistic (A-34) is independent 
of fp    and <r and yields a CFAR processor; the samples need not be equally 
spaced in time. 

There is a problem in test (A-34) as to deciding the Z-w   interval or band in 
which to choose each   6K .  The choice definitely affects detectability, the exact 
degree depenc^ng on the true (unknown) signal phase   vj/^ . This problem is dis- 
cussed fully in the main text. 

A. 1.7   PROCESSOR VII: UNKNOWN SIGNAL 
PHASE; PHASE-DIFFERENCE SAMPLES 

No derivation is necessary for this case. The phase-difference samples 
S»,-©*., are formed for ZsK^H.  For known signal frequency,  the phase differences 
tend to cluster around zero for high SNR, even though signal phase i|ic is unknown. 
Thus, a random walk similar to (A-25) is formed and the real part is compared 
with a threshold. The test is 

The samples need not be equi-spaced in time. 

^ T. -35) 

A. 2   UNKNOWN SIGNAL FREQUENCY 

It is unrealistic to assume that signal phase would be known at some time 
instant for unknown signal frequency. Accordingly, there are no analogs of 
Processors I and IV in this case. 

The received waveform here is a slight modification of (3): 

for üoppler shift -fj   . The complex envelope of the received process is 

exp (i2Trfdt)[T0 expOi) + D tö] . (A-37) 

A sample of the complex envelope at time -t,,   is denoted by 
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^«e xK-»-i^ = e t?(iMO[?cexf(ii)-h"fy] 

H "P0   exp(l ^fj-t, + iO + ". t) +■ ' ^ t) . 

E ^fS^f^W^Vf 

■ 

(A-38) 

The statistics of the real component samples,   nx^M)    and   flufc*) , of the noise 
are available from the following (reference 3): 

n,W +1^^) =  niytxf(i^rfji) = 0, 

|o,ft)+in ft)!' = |nH:)r -   Zcr1, 

[^ (fc) + i *  fOT    =    n' ^ ^(i^-rrfj-t) =  0. 

(A-39) 

Therefore, 

These noise statißtics are identical to those for known signal frequency. 

(A-40) 

A. 2.1   PROCESSOR I: NO ANALOG 

A. 2. 2   PROCESSOR II:   UNKNOWN SIGNAL 
PHASE; AMPLITUDE AND PHASE SAMPLES 

For signal present with hypothesized phase vjj   and frequency shift + , the 
PDF of samples   Xk   and   u,    in (A-38) is, using (A-38) and (A-40), 

F'K ^M= r^ **r\- ^VT^^^^)V^5,n(M^4^]   (A-4i) 
The PDF of *    and $   in (A"-) is therefore 

2<r* 
X 

)t=l 

ie^   -i^t, I 
(A-42) 
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(A-43) 

If the a priori PDF of \\)  is uniform, there follows 

If,  at this point we make an assumption about a PDF for f , we must make some 
approximation to (A-43) so that the evaluation will be amenable. The one we adopt 
is identical to that made earlier, namely; small SNR. Then, the relevant inte- 
gral   hat must be evaluated is 

(A-44) 

where if,,-fi)   is the range of anticipated Doppler shifts, and the PDF is assumed 
to be uniform. Now, for a  large range f^-f, ,   the only terms  in (A-44) that 
vield significant contributions are  k=i  : 

(A-45) 

Alternately, (A-44) again reduces to (A-45) for equi-spaced samples,■tw<-'it, =4 , 
and a uniform PDF of f over a '/A HZ range (which is approximately the fre- 
quency separation between adjacent filters as discussed following (2)). Thus no 
use would be made of [63 under either assumption for the PDF of f . This is 
a case of designing for the worst possible situation and, thereby, drastically 
degrading performance (see reference 3, page 180). 

A better approach is to return to (A-43) and choose f   as the ML estimate; 
i.e., choose  f   such that 

' V    e L  all-fMf;i),        (A-46) 
K=i 

where   (f^f,)    is the allowed range of Doppler shifts. Then the comparison of 
?iU ^1^)/^ ä) w^^ a threshold is equivalen; to the test 

^l\P**&** > T (A-47) 

Another approach is to use ML estimates for both \jj  and f .  From (A-42) 
we see ihat the ML estimate of vjj   is 

(. K^ I 
(A-48) 
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Substitution of (A-48) in (A-42) and the subsequent choice of f   for a maximum 
of   f,   again yields (A-46); and the resultant generalized LR test is afe;!n (A-47). 
This test is independent of ^   ; also, no assumption about small SNR is required 
to deduce (A-47) as an appropriate tesi. 

A. 2. 3   PROCESSOR III: INDEPENDENT SIGNAL 
PHASES; AMPLITUDE AND PHASi: SAMPLES 

Eor independent signal phases,  the PDF is a modified form of (A-41): 

Therefore 

(A-49) 

(A-50) 

Now,  if the phases are uniformly distributed over 2-rr, 

Since this PDF is independent of -f , a decent processor can not possibly result 
and we discard Uns approach. 

If we instead take the ML estimates for vjj | we find from (A-50) that 

$K  -     ör3[€xp((aK~i27rH)] (A-52) 

(A-51) 

Then 

BUIII^-^^-^«-^^^] (A-53) 

Again, the independence of f   yields an undesirable processor. Notice from 
(A-53) that the generalized LR test would take the form 

H 
SK, ^ X (A-54) 
Ic»' 

.r>2 
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A. 2. 4   PROCESSOR IV: NO ANALOG 

A. 2. 5   PROCESSOR V: UNKNOWN SIGNAL 
PHASE; PHASE SAMPLES 

Our starting point is ,A-41,. By tran3forming to po.ar coordinates aooording 

lo (5), we obtain 

Then 

by means ot an approach that is analogous to that in (A-18, through (A-23). 

B we assume that the PDF tor ty  is uniform, we obtain 

(A-57) 

(A-58) 

x:h(^^.4. ^^ 
At this point, an assumption about the PDF of -f   leads us to the same problems 
encountei-ed in (A-43) through (A-45), namely,   undesirable processor forms. 

Accordingly, we choose the u!L estimate -P   in (A-58): 

\^lexp(,^-i2-n-hv)l > \ ^LexpfleK-i^i,)!. all f^A (A-59) 

and the generalized LR test then takes the form 

max 
K=l ' ' 

(A-60) 

■I    ■  - -  1 

The alternate approach of using ML estimates for both -^   and -f   in (A-57) 

is also possible: we find '.hat 
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Substitution of (A-61) in (A-57) and the subsequent choice of -f   again leads to 
(A-59)   and the generalized LR test. (A-60). This test is independent of TJ  , but 
is accurate only to order ^JT . 

A. 2. 6   PROCESSOR VI: UNKNOWN SIGNAL 
PHASE; FITTED PHASE SAMPLES 

The philosophy here has been explained earlier in this appendix. However, 
the average squared-error for unknown frequency is generalized from (A-32) to 

E'lVlrM-^' (A-62) 

where we assume that the phase samples are equi-spaced in time. The partial 
derivatives of E  with respect to vjy   and ß   are both set equal to zero and solved 
to obtain the estimates 

M v^s T£^X. 
(A-63) 

Substitution of the estimates (A-63) in (A-62) yield the minimum scatter 

E =   IT ^— ©K ~ M M-M^*-^ (A-64) 

When   E <T, the signal is declared present. Test (A-64) is independent of T0 

and is a GEAR processor. 

A. 2. 7   PROGESSOR VII: UNKNOWN SIGNAL 
PHASE; PHASE-DIFFERENCE SAMPLES 

For unknown signal frequency and equi-spaced samples, the phase differences 
on-©*., cluster around an unknown angle for large SNR. T le value of the unknown 
angle depends on the signal frequency and the time betwe« i samples. A random 
walk and magnitude similar to (A-29) is formed since only the length, and not 
the direction, indicates signal presence. Thus the test is 

Again, the test is independent of f^   and yields a CFAR processor. 

(A-65) 

-—•    -',-"'   '■•■'■■■   ■■      '■     -^M-,     :■      ■       ■. . ,'..   -.       .   ■ 
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Appendix B 

GEOMETRICAL INTERPRETATIONS OF PROCESSORS 

No assumptions about Gaussian noise or independent samples are made in 
this appendix.  Rather, geometrical interpretations of "good" processors are de- 
veloped and the errors associated with each are minimized. The resultant tests 
are identical to those derived in appendix A. Although signal amplitude "^     is 
assumed known, it is never needed in the tests. 

B. 1   KNOWN SIGNAL FREQUENCY 

B. 1. 1   PROCESSOR I: KNOWN SIGNAL PHASE; 
AMPLITUDE AND PHASE SAMPLES 

If a signal is present, the complex samples ^c.      should cluster about the 
point ?0 e

1^0   . A measure of the scatter is afforded by the sum of the squared dis- 
tances between these points: 

k'=i 

'^i?.^ 
K=l 

(B-l) 

If,  on the other hand,  the signal is absent, the complex samples should clus- 
ter about the point 0.    The scatter is then 

(B-2) 

Now, if E, < E0 by a sufficient amount, we would be quite sure that a signal is 
present. If, on the other hand, the converse is true, we would declare that the 
signal is absent. Therefore, the test we adopt is* 

£,  >   E0- A. (B-3) 

Substitution of (B-l) and (B-2) in (B-3) yields 

Ve{^' JttJ*"]  i T-, (B-4) 

where T   is a threshold that is adjusted for a prescribed   PF   . Test (B-4) is 
identical to (A-4). 

*Here, as in the remainder of this appendix, satisfaction of the upper 
inequality leads to a statement of signal presence, whereas satisfaction of the 
lower inequality leads to a signal-absent decision. 
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B. 1. 2   PROCESSOR II: UNKNOWN SIGNAL PHASE; 
AMPLITUDE AND PHASE SAMPLES 

For a hypothesized signal phase,  \f  , the scatter 

K^ I (B-5) 

y. | v. K-l ^ 

We can select ^f so that *'ie scatter is minimized; i. e., we try to find that com- 
plex point l^oqM) about which the samples f^e     clusteT best if a signal is present. 
The value of vj^ that minimizes (B-5) is 

(Note that this is identical to the ML estimate A-10.) Then 

(B-6) 

^ = X^^M?e-2?D  ^J?ve 
K-> 

(B-7) 

For signal absent,   E0   is again given by (B-2). Substitution in (B~3) yields 

XK^\%^ (B-3) 

which is identical to (A-8). 

B. 1. 3   PROCESSOR IE: INDEPENDENT SIGNAL 
PHASES; AMPLITUDE AND PHASE SAMPLES 

For hypothesized & gnal phase   \ in sample !< , the apnropriate measure 
of scatter for signal present is 

E, = ^1^&    -?o^    I 

Since we must be allowed to minimize   E,   by choice of   \))K , we choose 

yielding 
E-_-|lK-fMP:-2?e|:i? 

* = 1 

(B-10) 

(B-ll) 
K=i 

^iM^tfeyfetfw.. ; ^äiiüii^ÄMMAs^&^^i^^^ 
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Scatter   E,  is given by (B-2). Test (B-3) then yields 

K^i 
(B-12) 

Test (B~12) is not identical to LR test (A-16) or to the approximate LR test(A--17) 
that was derived for small SNR.  However, if the SNR is large {F0/<r>y> l) , (A-16) 
tends to (B-12) and, therefore,  (B-12) is nearly optimum for high SNR.  Test 
(B-12) is not, however, pursued further in this report. 

B. 1.4   PROCESSOR IV: KNOWN SIGNAL PHASE; 
PHASE SAMPLES 

Since amplitude sampk" fR^] are not used, it is expected that complex sam- 
ples ^exfOöOj would cluster around the point ■f«]^'!',,) for large SNR.  Therefore, a 
meaningful measure of scatter is given by 

M 

1 K^ I 
e     - e lit 

= 2M-2lMe^ieö; 
K-i 

Scatter En   is now given by 

= iLU' 
■•      y-i 

'^K 
- 0 = M. 

Thus, evaluation of (B-3) yields 

?N e^e 
\\  %J^> 

K^\ <    ■' 

which is identical to (A-25). 

(B-13) 

(B-14) 

(B-15) 

B. 1. 5   PROCESSOR V: UNKNOWN SIGNAL 
PHASE; PHASE SAMPLES 

For hypothesized signal phase \1), the scatter for ngnal present is 

t, =   ^L   e     - e 
K= i 

This is minimized by the choice 

(j) =  ö^nq 

(B-16) 

(B-17) 
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which is identical to ML estimate (A-30), and leads to 

Scatter   E^   is given by (B-14) and substitution in (E-3) yields 
w-     1 A i 

K= l 

(B-18) 

(B-19) 

which is identical to (A-29). 

B.2   UNKNOWN SIGNAL FREQUENCY 

It is unrealistic to assume that signal phase would he known at some time 
instant for unknown signal frequency. Accordingly, there are no analogs of 
Processors I and IV in this case. 

B. 2. 1   PROCESSOR I: NO ANALOG 

B. 2. 2   PROCESSOR II: UNKNOWN SIGNAL PHASE; 
AMPLITUDE AND PHASE SAMPLES 

For high SNR, the complex samples JR^e    | in (5) should cluster around a 
uniformly rotating complex vector, "^«.«{i^ + i^rf^) , where initial phase vl*   and 
rotation rate  -f   are unknown.    The measure of scatter adopted is therefore 

r.\ 

E- Ke^-n  exfti^^iO]1 

^K: -V *?:~7?^^*t*j% e1™**]^ 
(B-20) 

This is minimized by the choice of hypothesized signal phase as 

ItrrfKl (B-21) 

which is identical to (A-48).  The resultant value of   E". , 
M 

£.= ^K + !A?:-2To 
K-i 

1 \e 

i 

(B-22) 

is further minimized by choosing f   such that the last term in {B-22) is maxi- 
mized; i.e.,  choose f   suchthat 
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This is identical to (A-46).  Then 

for »II   -f cK.-R.)-   <B-23> 

=   ±- 
K^ i 

^+M?0
7-'i^ w* ̂

 h-i 

(B-24) 

The value of scatter   E^   for signal absent is still given by (B-2). Therefore, 
(B-3) yields 

I    y 

K^      e 
K^ i 

>   x (B-25) 

which is identical to (A-47). 

B. 2. 3   PROCESSOR III: INDEPENDENT SIGNAL 
PHASES; AMPLITUDE AKD PHASE SAMPLES 

The appropriate measure of spread for independent phases is 

i^l' 
(B-26) 

Since this is the same measure that was used for known frequency in (B-9), test 
(B-12) is not an acceptable test for unknown frequency; it is, however, identical 
to (A-54). 

B. 2. 4   PROCESSOR IV: NO ANALOG 

B. 2. 5   PROCESSOR V: UNKNOWN SIGNAL 
PHASE; PHASE SAMPLES 

The appropriate scatter here is a modification of (B-2Ü): 

e      - e E-^ 

= 2 M - 2 K*   e ■' ^ e 
\ty   £;     IBH     -i'2TT-fiH 

(B-27) 
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This scatter is minimized by the choice of hypothesized signal phase 

which is identical to (A-61). Then 

E, = 2 M - ^\ ^ e^P (' e«-' "^Ol 
A 

can be further minimized by choosing -f   such that 

which is identical to (A-59). Then 

E, = 2 M - }   ™\ 11; ^f (i OK - i ^Oj _ 
The value of scatter   ^   for signal absent is still given by (B-14). Therefore, 

(B-3) yields 

(B-28) 

(B-29) 

30) 

(B-31) 

W\flV 
M \ 

(B--32) 

which is identical to (A-60), 
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Appendix C 

DERIVATIONS OF PROCESSOR PERFORMANCE 

The additive noise is assumed to be Gaussian, and the samples statistieally 
independent as noted in the discussion following (2). Derivations of the detection 
probability, T^, ,    will be made or approximated where possible,  and numerical 
methods that would lead to exact performance calculations in some cases will be 
outlined. Such situations were not pursued to completion in all cases, however. 

Some of the derivations to follow are condensed in the interest of brevity. 
However, the essential stops are presented in such a way that the reader can 
follow them and insert the missing calculations. 

C. 1   KNOWN'SIGNAL FREQUENCY 

C. 1, I   PROCESSOR 1: KNOWN SIGNAL PHASE; 
AMPLITUDE AND PHASE SAMPLES 

From table 1 and equation (5), we express the decision variable as 
M M 

Jl =   Zt5\lv X** + 51« t^%- (C-l) 

Random variables (RV) %   and  ^    are Gaussian, with the PDF given by (A-2) 
for signal present.  Then   RV Jl is Gaussian, with 

where we used the independence of all the RVs.  Therefore 

?0 - ?MU>T) = fdi^M^ex^-^^.-M?^ 

(C-2) 

= $(yM T. 
/M'cr -), 

(C-3) 

where 

- «o   J ^ 

(C-4) 

ill 
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"r T 
If we define a normalized threshold   X = JJS       find set )M■=-—-,  it follows from 
(C-3) that 

T^^/SV-X),  PF-i(-x); 
false alarm probability Pp    was obtained by setting wo i»i Pp. 

(C-5) 

C. 1. 2   PROCESSOR II: UNKNOWN SIGNAL PHASE; 
AMPLITUDE AND PHASE SAMPLES 

From table 1 and (5), 

M&Hl^M' 'A 
(C-6) 

The PDF of *   and £   is given by (A-2),  and since  U.  and V   are Gaussian RVs, 
we have 

/Ml+ir>T 

ffi* +v >T 

T 2T 

_ (C-7) 

independent of  ^ , where (reference 3, appendix F) 

b 
Therefore 

(C-8) 

(C-9) 
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C. 1. 3   PROCESSOR III: INDEPENDENT SIGNAL 
PHASES; AMPLITUDE AND PHASE SAMPLES 

From table I and (5), 

K« ! 
The characteristic function (CF) of R\'J- is 

f(<?)=  B^fOtOJ = TT E[e*c?[i?(xK
2-h^)]] 

(C-10) 

^ 
M 

A^^^WT ^p[if(x^/)-^(x-^+(y-T05H7]j(C_11 

(\M"2(r^)   exP 
M?O    ir'f 
<rl    l-i^cr'Tj 

upon transforming to polar coordlnatcH and UMIIII; roicn-mc li,  (>. (11)1 4, The 
probabilities of detection and false alarm arc llicii (reference :i,  pp.   L',17--21i)) 

where 

. Q(Q»+.)<P( ^i;) •'''(!;/ i.iui), 

(C-12) 

(C-lii) 

((•-14) 

and,  in particular, 
Mi / •v i x' 

Extensive numerical results are prnvliieil In relcrein e .'i. 

C. 1.4   PROCESSOR IV: KNOWN SICNAl, I'llASK; 
PHASE SAMPLES 

It is convenient at this point to make a change of variables; using (ij), 

(xk4 i yK)^x?(- A) -~ K^PO^IW -' ^o +^)^ = ^MW^'^ 

(i:s 
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That is, 

K^K- ^^f("'i)^W (C-16) 

Then (reference 3 or 4) 

ET(a^ y i EIX) = jr exP(.-ife)E(aft,)) = 0, 

f(|aK+iWr)- E(«;)^(^^E(|BftjO = 2, (o-i7) 

Therefore 

(C-18) 

Since (C-16) is a linear transformation on a complex Gaossian RV,  (C-18) indi- 
cates that  ÖK   and   ^K  are independent zero-mean unit-variance Gaussian RVs. 

Then from table 1 and (C-15),  the decision variable becomes 

o „ C4- u^.wn . j: r ^a>   ; ,   (C 19) 

where 

W H 
'o (C-20) 

Exact Detection Probability 

The first order PDF of 

yn + o 

can be evaluated in closed form as follows.  Let   t= WH« ; then,   for |H< I   , 

(C-21) 

(C-22) 

M 

..... 
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using (C-21),  (C-18),  und (C-4).  Therefore, the PDF of «S, for |f|<; I, is 

(C-23) 

I 

L -' 

upon completing the square in the exponent. 

Now the CF of   S ,   which is given by 

fsff) = jVevfGfv)?s(r); 

can be quickly evaluated by a fast Fourier transform (FFT).  (This CF is also 
available directly from (C-21) and (C-18) as 

(C-24) 

f.feH f dr r e*P (-^^) I* (»r + i?), (C-25) 

but that method is much more time-consuming.) Then, the CF of RV^ in (C-19) 
is   -fs   (?) .   Finally,  the cumulative distribution of RV^ is available (from ref- 
erence 7,  (7)) as 

which can also be evaluated by an FFT (reference 8).  This exact piocedure has 
not been pursued in this report. 

Exact False Alarm Probability 

The CF of s    for signal absent is given by (C-25) with M =o : 

f3(T)=Io(i?)-T0(T). (c-27) 

Therefore the CF of RVj.   in (C-19) is 
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and thus (reference 7,   (7)) 3 (reierence i,  vih /*>  \e     t* 

TF = ?r.^>T) - i - ^^if (?) '«(rr) 
(C-29) 

(C-30) 

_ _L _ 
2 

where normalized threshold 

\ H 

Equation (C-29) is iin exact relation for ?F ; it is seen to depend on only \ 
and M. Therefore,  Processor IV is a CFAR receiver; i.e.,   X can be chosen 
to realize a prescribed   Pp ,  requiring only knowledge of M . The reason for 

the threshold scaling in (C-29) and (C-30) is that 

-»ö*. (C-31) tyh)--*?^^ 
Thus, (C-29) yields (see reference H, 3.896 4; integrate both sides with respect to b) 

PjL-v   $(->)     a3   K-> oo. (C-32) 

Therefore it is anticipated that the choice of X   in the exact relation (C-29) for 
specified  PF    becomes relatively independent of M,    for large M . Table C-l 
gives values of X ,    as determined from (C-29), for   ^ = 25" . 

Table C-l.  Thresholds Required 
for Processor IV for M = 25; 

Known Signal Frequency 

F 

10' 

10 
-2 

10 

10 

-3 

-4 

X(PF,  M = 25) 

1.28597 

2.31209 

3.03814 

3.6139G 

Approximate Detection Probability 

The RV J. in (C-19) becomes approximately Gaussian for large M , and wo 
need evaluate only its mean and variance to approximate its PDF. From (C-24) 

and (C-25) 

fe'(o)=-.Efs)=  fjrr^[-^)TM  L 
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Therefore (reference 6,  6.618 4) 

~   M, 

AlSO, ot /        2 T-\        , , ,      N 

^ w=_ E(5')=[ir r v? [- ^i; (-) (" 0, 
yielding (reference 9, 9. 6. 26 and 10. 2.13 and reference (i, 6.618 4) 

(C-34) 

(C-35) 

(C-36) 

The variance of RV 5  is 

using (C-36) and (C-34). 

Then the PDF of RV J in (C-19) is 

w5   = 01 ; 

and 

(C-37) 

(C-38) 

(C-39) 

Denoting the approxim 
have 

ate detection probability by   PD    and using (C-30), we 

X ^ X / r—' Ms ^ (C-40) 
(Tj/) 

where   yrts   and   q     are given by (C-34) and (C-37),  respectively.  As the sig- 
nal strength approaches zero,  ft\->0 , and (C-40) approaches the approximate 

false alarm probability,   P-   : 1 / 
\ 

%--U»-°)* ^[-^H, = ?(-^ 
(C-41) 
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using (C-34) and (C-37).  This result is identical to (C-32), which is consistent 
with the observation that both are valid for large M .   Thus,  (C-40) and (C-41) 
constitute the large-f^   approximation for detection and false alarm probabilities. 
For small  m ,   the factoi WsAs    in (C-40) is approjdmately-^VPw ; comparison 
with {C-5) indicates that Processor IV is 1. 05 dB poorer than Processor 1 for 
large   H   and small SNR, w\. 

To obtain exact receiver operating characteristics for this processor, (C-29) 
should first be solved for the required  X = V(pp;R) .  Then, that value of   X , 
along with (C-30), should be used in the exact relation (C-26) to obtain  Tjj   . If, 
instead, approximate values of   J^   are acceptable,  (C-40) should be used, where 
the values given above are used for X(Pp,M).    That is, the values of   X   used in 
(C-40) should not be obtained from the approximation (C-41), but from the exact 
relation (C-29). 

C. 1. 5   PROCESSOR V: UNKNOWN SIGNAL PHASE; 
PHASE SAMPLES 

From table 1 and equations (5),  (C-15), and (C-2Ü), the decision variable is 

K 

5   u-viv (C-42) 

A factor of   l/|^   'as been supplied for convenience;   it can be absorbed by 
threshold adjustment.  We have not been able to derive a tractable method for 
evaluating the detection probability exactly, but an exact false alarm probability 
calculation is possible and a good approximation for the detection probability 
has been attained. 

Exact False Alarm Probability 

For V^ = 0 ,   we have 

^       k 
i = k+tvl, u=^ -^TT > v- M" tfiT^W"      (C-43) 

The second-order CF of RVs U.  and V    is 

xil^ (C-44) 

(18 

. . , ■_ 
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using (C-18) imd changing to polar joordinates. Then, the second-order PDF of 
W   and V     is 

(C-45) 

Therefore 

-OX^WJ:^), 
(C-46) 

upon interchanging integrals,  changing to polar coordinates,    and employing 
reference 9, 9. 1. 30, Thus 

P^i-C^.W^f), (C-47) 

where normalized threshold 

\ s rfm  T. (C-48) 

Since   Pp   depends on only  M    and   X  ,    Processor V is a CFAR receiver. The 
reason for the threshold scaling in (C-47) and (C-48) is that 

?F-  I-I0dx ^fx)e>cp(-^-)   «5   M->^ (C-49) 

or 

PP - e«cp(-XVV)  a^ M-*00, (c-50) 
where we have employed (C-31) and reference 6, (5. 618 1. Therefore the choice 
of X(pp M) in the exact relation (C-47) becomes relatively independent of M for 
large   M .    Table C-2 gives values of  X , as determined from (C-47), lor M-2.r. 

Table C-2. Thresholds Required 
for Processor V for M = 25; 

Known Signal Frequency 

*v X(PF, M =25) 

1Ü-1 

uf2 

io-3 

1Ü-4 

2. 11272 

2.99424 

3. 62192 

4.12829 
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Approximate Detection Probability 

The RVs  u   and V   in (C-42) tend towaid Gaussian RVs for large M .    We 
assume that th 3 second-order PDF of u. and V   can be approximated by a joint 
Gaussian PDF, Therefore we must evaluate all first- and second-order moments 

of u  and V .    From (C-42) we have 
h 

l^A 

U - 
Wj- q, V=: X 

A comparison of (C-51) with (C-21) and the use of (C-34) shows that 

E(u) =(ffM ^^-^[lol^ + X.kA)] - ^u. 
Also, using (C-18), it follows that 

E(v) ' JJOA ^^ 

since the integrand is odd in U . 

The correlation between  U   and   V   is 

(C-51) 

(C-52) 

(C-53) 

erf    N     -L ^ F5 k+fiii ." = 0; 

(C-54) 

because odd integrands cause all averages on RVs   ^   to be zero 

The variance of RV v   is 

< 

-X 

.    , .,      ,._«    >.—w,^. fvr.m tViP v±i    term 

(C-55) 

where we have separated the   K=i   terms from the k^J    terms. The second 
term in (C-55) is, according to (C-r;3), zero; and the first term, upon changing 

to polar coordinates, is 

^0 irr (C-56) 
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where we have used 

and reference 9, 9.6.27, 9.6.26,  and 10. 2. 13, and reference ß, 6.618 4. 

Finally, the mean-square value of RV u   is given by 

W^fetj) r ^E ^-Kü)' 

E»«.!^;!'^^^^!^  S"+»>'+ ^ ^-«M«^ (C-58) 

i'he first average in (C-58) may be expressed as 

ML 
bx 

''^[(Vv^-V-^    \: M 1 l-^xpf-yvftQ 

^ 
(C-59) 

upon using (0-55) and (C-56).  The second average, by inspection of (C-51) and 
(C-52), is obviously Vv\^ .    Therefore the variance of RV U is 

K (C-60) 

It is immediately obvious from (C-56) and (C-60) that the variances of d 
and V   are, in general, unequal.  Thus for the second-order PDF, we have 

y{u;y) = {z^T-^y exp[--k~p - 2C 
(C-61) 

Then 

U*4V>T 
(C-62) 

Equation (C-62) gives the approximate detection probability f^   ;   its evalua- 
tion is in terms of integrals of elliptically bivariate Gaussian functions over off- 
set circles,  for which there arc few tables available (e.g.,  see reference 10). 
Accordingly, a different approach is used here; i e., the integral on V   in (C-62) 
is first evaluated using (C-4).  Then there follows 

a 
(C-63) Pp .   \-{2-rrf^6Y exp[-X(x- kf] [2^ (/^77) - l] ) 
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where 

T X 
fitfti 

4. - *k C- ^7 2M(r; V 
(C-64) 

Equation (C-48) has been used in (C-64); the quantities required in (C-64) are 
given in (C-52),   (C-56), and (C-6Ü).  Numerical evaluation is easily effected by 
using approximations to <£ (e.g., see reference 9,  26.2,17). 

terds toward zero, there follows from (C-20), 

(C-65) 

As the signal strength 
(C-52),  (C-56),  and (C-60), 

^ 0; K -> o, < — (2 M)~', < — UM)H. 
Therefore an approximation to  PF   is afforded by (C-63) 

which is consistent with (C-50) for large M . 

(C-66) 

Equations (C-47) and (C-63) constitute the analytical results for Processor 
V. Values of X are determined from (C-47), and then substituted in (C-63) and 
(C-64). 

It is of interest to evaluate  ^D   for small SNR,  and to compare it with 
Processor U, which also uses amplitude samples.  From (C-52),  (C-56),  and 
(C-60) 

(C-67) 

Therefore 'C-62) yields ^-o^; yieiub  ^ —j 

(C-68) 

where we have changed to polar coordinates and ased (C-8) and (C-48). A com- 
parison of (C-68) with (C-9) reveals that Processor II functions equally as well 
as Processor V,  while using a value for W\ that is ^/l     less.  Thus,  Processor 
V is 

2Ü \o${j&) - i-0^ <te (C.l39) 

poorer than Processor II at low SNR and large M ,   where the central limit 
theorem is valid for the analysis of Processor V. Thus, loss of amplitude in- 
formation doet. not cause much degradation in detectabiliLy; phase information 
is the major factor in determining detectability.  It will be noticed that the amount 
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'•Ti 

the performiincc ol' Processor V is below that ol' J.l is exactly the same as that 
by which Processor IV is below I.  These arc analogous processors, in that each 
pairing differs only in its use of amplitude information; they make the same use 
of phase information. 

C. i. (i   PROCESSOR VI; UNKNOWN SIGNAL PHASK; 
FITTED PHASE SAMPLES 

The decision variable for this processor (table 1) was given as 

I ^2A 
^  K^i    K      V M   KH 

(C-70) 

We are unable to exactly evaluate  FJ-,   or   ?r    in any simple form.   Rather, we 
outline a numerical approach that    ould be useci,and then derive approximations 
uo the detection and false alarm probabilities. 

Exact Detection Probability 

The CF of   li\' J. in (C-7()) is 

f^-  -   ^-d^pfö.)-   P'M^ 
M 

l^^l 'if M rc-7!] 

Now the second exponential in (C-71) can be simplified by means of the following 
artifice (reference 11,   (22)): 

- V t       i \ 

exp(-<ryy2)   =[dv(2Trrl)     exp(-^  -H/^;. iC-72, 

The quantity   y\    on the left of (C-72) is replaced by iX   on the right.  Identifying 

the multiple integral for the CF in (C-71) can then be expressed as 

^ . ^-jdx ^pGxV4fdöp/e)^p[^ + -Lfxej]f' 
(C-74) 

'A 

-- ^-rH^ exp(f )^e^)e.{iieV^xe]] 
M 

7:5 
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For a particular value of f , either lorm of the inner integrals on $   in (C-74) 
can be quickly evaluated for many values of X by means of an FFT, permitting 
immediate evaluation of the outer integral on X .  The PDF to use for W©)    Is 
given in (A-19) and depends on ^ .   The final evaluation of the cumulative dis- 
tribution of RV Jl  is available by using the methods in references 7 and 8. The 
exact   Vp-   may be evaluated ia a slightly simpler fashion since f>(Q)=Y*r) ^ l^W^ 
in this case, and the integral on Q in (C-7'l) is the error function of a complex 
argument (reference 9,  chapter 7). 

Approximate Detection Probability 

The RV ^ in (C-7()) i        proximately Gaussian for large M . Therefore 
only its mean and varianci   must be computed to obtain approximations to Tj) 
and  Pp  .  Since   ^   depends on the precise value of   l|/0 , we will select the best 
value to maximize T^     For the test in (C-70) where \B^\< "TT-. the best value of 
'^    is zero. This point is discussed further in the main text. 

In order to evaluate the mean and variance of RV ^ in (C-70), we will need 
the moments of RV Ö. For small SNR, we use the approximation given in (A-20) 
to order  T^/cr^ H^ ; we obtair. 

^3   F(6") -|d&6Mpfö) 

2rrr 
f 4 6 [l+^r ^cos e -V $■** cos(2e51  -fc order n . 

(C-75) 

It follows that  lA,A-ü   for   V) odd, which is the result of our choice of ji, ^ 0. 
Using integratioD by parts for ^   even, we obtain 

/^i --^   v^^^+i^ ; "^   0,rcfer   ***> (C-76) 

The mean of RV J. is obtained from (C-70) as follows: 

The square of RV ^ can be expressed as 

M M 
t- i S-e^e: - ^ «W. + ^ h^_.e^6„9P     (c-v«, 

^A   ytjw- »M    K;>=i;ti-i tii,ii;p-i 
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The means of each of the three summations in (C-78) are,  respectively, 

ll 
(C-79) 

^-v^K^-')^. ^W(M-))/At+6Mh-'XM-2)/V^M^-'XM^M"3K • 

The mean-square value is then available from (C-78) and (C-79), and the variance 
ol i1   is,   finally, 

vorfi}=E^-£
I
W = ^i-^Jh-f'^l -- ^- ^C-80) 

The ratio 

3.^ Jh 
"i 

I—I El A 

(C-81A) 

5U Pev. ^Q1] 
\vr   iai^e  M. (C-81B) 

The last relation would be obtained from (C-70) by simply dropping the last term. 
Thus an approximation to Processor VI would be afforded by   (A tfr, ^K  ' this 

possibility has not been pursued further, however. 

The probability of Rvi  not exceeding a threshold T is approximated ac- 
cording to 

 c*ä 

by using (C-4). The quantity W^/0} is given by (C-81A), (C-77), ömd (C-BO) in 
terms of ^2. and fa, which, in turn, are given by (C-76), or, more generally, 
by (C-75).   For large M (and \|v =d), we obtain the approximations 

r.) 

-_ jjfc :...- -....,:, :        ., -_..... .      ,   ..   ...      :.    ;.^    :   .. 
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where AH      z   (I~ ^?TJ   . A comparison of (C-83) with (C-5) shows that, when 
4l nO ,  Processor VI is 
"0 

20 lojO/jS-i) ~  1.31 iB (c-84) 

poorer than the optimum phase-coherent processor (I) for large M    and small 
SNR, whereas a comparison of (C-8S) with (C-40) et seq.   shows that Proc- 
essor VI is Ü. 34   dB (1. 39 - 1. 05) poorer than Processor IV for large M   and 
small SNR. Thus, for known signal phase, ^0   , the nonoptimum combination of 
phase samples,  (C-70), is only 0. 34 dB poorer than the optimum combination 
(see table 1) for large M   and small SNU. However, these comparisons may not 
be relevant for the range of useful  T^    and T^  ;this relevance can be determined 
only from the detailed receiver operating characteristics presented in the main 
text. 

C. 1.7   PROCESSOR VII: UNKNOWN SIGNAL PHASE; 
PHASE-DIFFERENCE SAMPLES 

The decision variable for this processor (table 1) was given as 

Re^J^expO'e*-;^,)^ (C-85) 

We actually consider a more general processor here, namely, one that uses 
weighted  phase differences 

Jl-K^ 
M 

KO 
K^R^expO^-iOJ, (C-86) 

because better performance may be attainable for  u^o Uian for ^* = o . In trade, 
however, the CFAR capability is lost for l^-^O . 

Exact Detection Probability 

The one case in which a closed-form expression for the CF of RV^i in 
(C-86) is attainable is where   u-l . To show this, we use (5) and (C-15) to ex- 
press 

^ (T- J: [(^^(WoHnV-kK-j = Ü + A. (C-87) 

The CF of 1   is given by the product of the CFs for RVs J^   and Jy   since foj 
and  l\>^j   are independent (see (C-T8)).  Also, the CF for J^   is a special case 
of that for Ja , obtained by setting VUO    in the quantity J,a .  In order to obtain 
the CF for RV A» , we use reference .1, appendix C: Matrix _g  has elements 

0j oUoVise  J  > %- > i < M (C-88) 

7(1 

t&jJäi&'&L-A 
'tfätä'fälltifä&f'fci \t 'tr'i'i'fi •-< 

i^ä^^^^.,«^ 
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;Lnd ;ill the elements of column matrix M   are equal to M .  The covarlance of 
RVs iQ*)    is equal to the identity matrix; therefore matrix A   is equal toj? 
(reference I,   (C-H)).   Let the normalized modal matrix and characteristic value 
matrix of B   be denoted by Q   and  X, respectively. Then the CF of Ja   is 
given by 

K- 1 

where matrix 

i2Kf (C-M9) 

It follows that the CF of KV Jl^   is given by 

KM 

and,  therefore,  the CF of RV .£   in (C-H?) is 
M 

f(?)%Trj(Hzvr«K-T^f: 

(C-90) 

(C-91) 

(C-9^ 

Evaluation of the characteristic values [\J    of _g.   is possible from ref- 
erence 12, (G?) and (08),  and are given by 

V  r^s(-£~);MK^, (C-93) 

Kva', ation of the normalized modal matrix  Q of matrix ^ in (C-88) requires 
corai titcf computation,  and (C-92) can be evaluated only with such aid.   The 
cunii lative probability distribution ;uid, hence, the operating characteristics 
of Processor Vll for u = |   in (C-8Ü) are then available by means of the techni- 
que:  described in references 7 iind s. This exact approach to the detection prob- 
ability for u= I    hits not been pursued further in this report. 

Exact False Alarm Probabilities 

f^ for /* ~ I .    The false alarm probability for   u-|    is immediately avail- 
able from the above results.   For ^ = 0,  (C-90) yields ^K=Df ;md (C-92) become? 

The PDF of RV Jl in (C-H7) is then given bj 

[M/s]     r 

fU) MX : 

--M x: ^f" txr; > 

(C-94) 

(C-9r>) 

a«*' «j£jÄ^äi(ßsÄäiaai'ik»stt iaa^^^.^^.^t^«g8aai«a^''iii^i^^ 
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where 

c < W 5 [MAI , 
(C-96; 

xm   ^K 

and  {^   aregfvWenin(C-93),  The probability of false alarm is 

.[fc„e.p(^)VT->a 
^ -I 

It is convenient to define a normalized threshold as 

\=        T 

in which case (C-Ü7) becomes 

(C-97) 

(T^M7^ ' 

^(r^ c. e^c 
/y^-Q/T   ^ 

w =■ i C05 

X>0 

(C-98) 

(C-99) 

The reason for the scaling in (C-9ö) is that  T^   in (C-99) now approaches ^(-X) 
as M-*-"0-  To see this, we can either use (C-87) ;uid note that Jl   approaches a 
Gaussiim RV with a zero mean and a variance of (T^H-f)  for large M, or we 

can investigate (C-94) for large M: We have 

But the sum of characteristic values is zero because the diagonal elements of 

f) in (C-88) are all zero.    Also .) are all zero.    Also / *     v       £t , 

(C-iOl) 

+ M 
Z- C05 

.ß-v- r4-^, 

using (€-93).  Therefore 

\M-+-i/ 

f(f)^ -<rV()fl ^**\\f,     {C-1"2) 

l + r^-Or1     ' "^^ 
which is a Gaussian CK with a zero mean and a variance of 2cn!n-l). Therefor^ 
the choice of X(PF h)   in the exact relation (C-99) becomes relatively independent 
of M, for large M .  Table C-3 gives values of X , as determined froai (C-99), 

tor   PA-IT and /*■ ~ ' . 
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Table C-3.    Thresholds Required 
for Processor VII for M     25 and 
M- 1; Known Signal Frequency 

PF (^ = 1) A (PF,   M - 25) 

IQ"1 1.25712 

IG"2 2. 40560        | 

io-3 3. 35438 

IG"4 4. 21662        | 

(C-103) 

(C-104) 

Pp for ^-0 ■   The false alarm probability for  I^^O   in (C-86) can also be 
derived in a tractable furm.   This processor is the phase-difference processor, 
(C-H5), that we expi-ess as 

The CF of ^  is then 

Now the average on   9    in (C-104) is (see (C-15;. through (C-iH)) 

^   [de,  expjj^C^e, 005^+-51^,^6,)] = JJf), (C-105) 

A similar procedure applied, in turn, to  6,  6-*      6^ . Yields the closed-form 
CFfor^: 

fff)=    Tff?). (C-106) 
Then, according to reference 7,  (7),  the exact false alarm probability is 

^--ifd^Tr'^i), (C-107^ 

wh'^re ncmalized threshold 

x. V^T. (C-10H) 
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By an argument similar to that in (C-28) through (C-32), we find 

?F[JK = O)" $(~-\)   «> H-**0- (C-109) 

Table C-4 gives values of X , as determined from (C-107), for  M=25"   and M=0. 

Table C-4.    Thresholds Required 
for Processor VII for M - 25 and 
ß    0; Known Signal Frequency 

PF (^ ^ 0) X (PF, M = 25) 

IG"1 1. 28615 

10"2 2. 31149 

IQ"3 3.03591 

io-4 3.60941 

Approximate Detection Prob, hility 

The R\' X in (C-86) for large M   is approximately Gaussian.  Accordingly, 
we need evaluate only its mean and variance.  By using (C-15) and (C-20), we 
first express (C-86) as 

M 'K-l 

where 

V = 

Then we define 

and express 

where 

W-f QK S.H K 

u = M- 

M 

IC = 2 
(QC,.^^^,). 

(C-110) 

(C-lll) 

(C-112) 

(C-113) 

(C-114; 
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At this point, we derive several generic results lor the ItVs fQ,] a|ul lSK| 
that we will need both now ;ind later. (The derivation of the mean and variance of 
U. resumes at equation (C-121). ) We shall use (C-1H) et seq. freely. We have 
the mean 

CK - If d» A r   T^v i exP (- 4^.) 

St 
0 2Tr L 

2 
^ 

(C-115) 

n (s+t) „, exp(-wV.),lf(-^-;2; ^) -. c, 

where we have transformed to polar coordinates according to (K-rvfrQ-^ bersi»*, 
and used reference G,  8,431 5,  6.631 1,  and (C-lll).  Also, 

\=r^ ^ ^i^6 r,"i's,Me ^p[- r*-2"75Q^--]=o, (C-116) 
using the oddncss of the    G -integrand 

The cross-moment 

_L_ 

oddness of the  Ö -integrand.  Also, 

Sj = ^ r&y* r2-%.Se «p[- r'-2Wr^6+M'] 

3-'^' 

x  f ^ P (2-2P) e^p (-^A) ^(2 - 2»; 2; ^/i) 

(C-118) 
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using reference 6, 8. 431 3 and 6. G31 1, and (Olli).   Finally, 

We express   Cos1© = l-s'i^ö   in (C-119) and use reference 6, 6. 631 1, and (C-118) 

and (C-lll) to obtain 

M« r i   ~      (C'120) 

Now, we resume the calculation of the statistics of RV w in (C-114).  We 

have x    _* _j. 

using (C-115); the second moment 

(C-121) 

u        (H-i)    K,*=ll> 

i:E(cKc,.,+5,5j 

(C-122) 

iiEK^rf«.,^.)] 
M'1 

The four averages in (C-122) are given,  respcctively^y 
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upon using (C-115) through (C-120).   Combining (C-121) through (C-123),  it fol- 
lows for the variance of U   that 

2 4 
1 \2 

The PDF of U is then approximately 

^c(?-c3] 

and 

(€-121) 

(C-125) 

(C-12(i) 

The quantities yviw  and   f^   are available from (C-121) and (C-124), upon em- 
ployment of (C-115), (C-118),  and (C-120).   The approximate false alarm prob- 
ability is obtained by setting bi-O   i'1 the above results and is 

fl = f I- >), 
where normalized threshold 

X ^ ViCMHyi^Tfi^)^^" 

(C-127) 

(C-12H) 

(This agrees with (C-98) and (C-108) for  U-!    and  M-0,   respectively. ) Then 
(C-12G) becomes 

(C-129) 

Equations (C-127) and (C-129) constitute the approximations to   fj:    and F^   for 
arbitrary u .    Threshold  X   is determined from (C-127) for a specified   ?F   , 
and then employed in (C-129) to evaluate P0   .   However,  for u =0 oryw = i    ,X 
should be determined from (C-107) or (C-99),   respcc;i\ el.\,  and substituted in 
(C-129) for evaluation of fp .    (Of course, the best approach for ^ = I     is to 
evaluate the exact  F^   via (C-92). ) The quantities WM   and ff^    are available in 
(C-121) and (C-121). 

Approximations for Small   W 

For small SNRs per sample, Vr\-c< I   .   In this case, the following approxima- 
tions result.to order w : 

Hli 

■ ■   ■ ■ ^    .■       .....■- 
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m u.2
r"r2(^)«1, 

2r'r(^). 

Fhen (C-129) beconu-s 

il~i 

(C-130) 

ftf- X) as m-> o. (C-131) 

Two important features should be noted from (C-131).   First, the dependence 
on YA   is according to   wi1 , not according to Mi   as for Processor I, (C-5); Proc- 
essor IV,   (C-40); and Processor VI, (C-83).   rrhis result is also discernible in 
the exact CF calculation (C-92) for K=I , where the dependence of u^   is accord- 
ing to m' (see (C-90)).  Thus the phase-difference processors have a small-sig- 
nal suppression effect for all values of weighting constant yk   in (C-86).  Second, 
there is an optimum value of yu   to maximize the coefficient of  hi*  in (C-131). 
The calculations shown in table C-5 indicate that the best value of weighting^ 
to use in (C-86) is unity; however, the factor has a broad maximum about the 
point w = I .   (Also, the best value of u   for larger SNRs may not be 1. ) The loss 
i.i dctectabiiity at W=0   versus p-l    is available from (C-131) and table C-5 and 
is 10 log (4/Tr) = 1. 05 dB for small SNR; once again, the loss of amplitude infor- 
mation incurs a 1. 05-dB degradation in performance for smali SNR and large M . 

Table C-5.   Multiplving Factor l!s ?.(\ ir (C-131 

M 1              0 1/2 1 1-1/2 9 

v2l"']k »)\ TTM     . 785 . 953 1 . '.Ihti . 884 
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C. 2   UNKNOWN SIGNAL FREQUENCY 

In accordance with the discussion at the end of section 2, the only processor 
we will consider here is: 

C. 2. V    PROCESSOR VII; UNKNOWN SIGNAL PHASE; 
PJLASE-DIFFERENCE SAMPLES 

The decision variable for this processor (table 2) was given by 

1    1- \1 
K~l 

(C-132) 

We actually consider a more general processor here, namely, weighted phase- 
differences 

J = I^T^.expO^K-iO 
k^2 VC-133) 

because better performance may be attainable for ^^0   than for ^ = 0 .  An exact 
relation for the detection probability is not available for any value of u.   (For 
u= I , the fundamental problem is evaluation of the PDF of j^- i^i*.^      , where 
[?«!   are complex independent Gaussian RVs with nonzero means. ) We will, 
however, obtain approximations to the detection and false alarm probabilities 
for general values of u . 

Exact Fal? , Alarm Probabilities 

f   i. 

In a manner similar to that given in (C-110) through (C-114), we express 
(C-133) as 

where 

V- M-i   k^i 

The second-order CF of RVs U   and  V   is 

= E/e^p 

-f(f,7)   =   E^p((?U4..^)] 

^Ifcc.sA-^^-itSK^-Cs.,)! 
M-l k»! 

(C-134) 

(C-135) 

(C-136) 
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Now if we define 

«- - (tQ + 7 5X)/(M-I) , ^3 =(fSa - 7 COAH-I), 

the average on   C,   and   5,    in (C-13()) becomes 

= fclrr jcie evp[i/^co3eY5m6)]2t ^P^1/2) 
"o ^r 

dr r -ex 

(C-137) 

(C-138) 

whore we have employed (C'-lll) and (C-112), set ry\-0 > and have changed to 
polar coordinates. At this point, wc are stymied in attempting to evaluate the 
average on   C2   and   Sz   in (C-13(i), except in the two special cases of w-o and 

PF fur  ^=0.   For 14=0, we observe from (C-lll) and (C-112) that QVS^I 
in which case (C-138) becomes 

^o (^iV^?' (C-139) 

A similar step-by-step procedure for the remaining averages in (C-13()) yields 

-fM = Cv^V^V7). (c-i40) 
Then by the procedure given in (C-li) through (C-46),  we obtain 

(C-141) 

O 

S(i 
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where normalized threshold 

(C-142) 

(C-143) 

The scaling in (C-142) is chosen such that 

PF (M = o) ~ € vf (- X1^)   as  M^ ^ 
wliich follows when (C-47) t'irough (C-50) are used.  Table C-G gives values of 
X , as determined from (C-141), for  M-25' and u =0 . 

Table C-6, Thresholds Required 
for Processor VTI for M - 25 and 
M 

r  0; Unknown Signal Frequency 

PF (M ■■  0) X(PF, M - 25) 

IG"1 2. 14 258 

IQ"2 2. 99250 

10"3 3.Ü1779 

IG"4 4.12110 

YF for  u = I .    For M= I , we observe from (C-lll) and (C-112) that CK = ^K 

and   5   IhH .  Then (C-134) and (0-135) become, respectively, 

K^2 

The second-order CF of w   and V   is 

M ^ \"|7 

The average on    Q1    in (C-145) is 

(C-144) 

(C-14 5) 

while the average on   b,   yields 

6) 
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eXp^i^k-^JJ. (C-i47) 

The product of these averages is 

exp[- itf+v*)^-»- ^3, (c-148) 
(This result is also obtainable from (C-138) for ^ = 1 , using reference G, (j. ()31 4, 
when we observe the scale factor M-l used in (C-134). ) Now the averages on Q3 

and ba in (C-145) are very similar to those in (C-146) and (C-147), except for 
the added exponential (C-148).  Generally, the average on   ^K    takes the form 

where  TK(y)   is a polynomial in  ^    thai satisfies the recurrence relation 

\^)-TH_^)^jTHJ^))].>\,T,{^-o) X(y)= I- (C-150) 

In fact, 

K<=o 

The first few polynomials are* 

T0(y)- • 
T, 13) - I 

(C-152) 

The product of the averages on   aK   and    \>H   in (C-145) is then given by 

*The factorization of   TM(vj)   is presented in (C-1G2) and (C-lGl). 

88 
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^[iK^M^M-] >,^-M-,• lC"15:i, 

Finally, the averages on   C^    and   )?M    in (C-145) are given by 

2ir it+fiU  T^\f) 
{C-154) 

{t+f) M 

Equation (C-154) is the second-order CF of the RVs  U   and V    in (C-144).  Then 
by the procedure given in (C-44) through (C-4G), we obtain 

?rc\>{J>T)  - ?F{r
l) ~- P^(lu-HC;|>T/(r*) 

where normalized threshold 

X^ JL 

The reason for the scaling is that 

To prove this, we use (C-151) to show that 

X M 

tH/2] (M-K).1 

ZCM-OX1    j   ' TÄ-CM-2K)KM-ir     ^UX 

t-^J = -K^) - M 
R.O 

Therefore (C-155) yields 

PF(r i) - |-J^x 3;(K) e>cp(- 27) -- exK-^) «5 M > e*s 

upon using reference 6, 6. 631 5 and 8. 352 1. 

(C-155) 

(0-15(5) 

(C-157) 

(C-158) 

;   (C-159) 

si) 
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Now \vc will evaluate (C-l.r)5) in closed form by tirst defcrminirig the roots 
of the polynomial TM(y) .   We notice that RV R  in (C-144) is equal to RV J^CT* 
in (C-87) for W--0 ; but, the CF of the RV A/r   is given by (C-94) and (C-93). 
Therefore the CF of RV u   in (C-144) is equal to 

(C-160) 
K-- 

whe re 

A^«^-),1^^- 
-I 

(C-161) 

However,  from (C-154), the CF of RV t? is given by T^'[f3) : Set 7=0 in (C-145) 
and (C-154).  Therefore 

(C-162) 

In ordt r to evaluate (C-155), we first expand X. (L^  in partial fractions: 

T (u) - -r,^—   51 ^7- • (C-163) 

TM(a)= Tr(i + ^a; 

K-'t 
i+y^ 

(Notice that    ^^ \        since   TM(o) = I       .) The coefficients in (C-163) are 

given by K=" 

[M/al ,       hid   , ^{^A\ SwT 

Substituting (C-163) in (C-T)5),   ve obtain 
»1 

W^l 

K-i 
KK1. K, (TO, 

where 

(C-164) 

(C-1G5) 

(C-ir.6) 
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The integral in (C-l(>5) woo evaluated by means of reference 13, part II, 521. (1. 
The function   K,   in (C-Uifj) is a modified Bcssel function of the second kind of 
order one.   Equation (C-lü5) is a closed-form expression of the false alarm 
probability for u-l   ; the quantities [l^    are given by (C-1G4), and the quan- 
tities   \Xt\    are <;iven by (C-IGO).   Table C-7 gives values of  X   , as determined 
from (C-1G5),  for  M'25 and ^ = I • 

Table C-7. Thresholds Rec.aired 
for Processor VII for M 25 and 
M •   1; Unknown Signal Frequency 

I',, (F--1) \(PF, M  25 

u.-1 2. 16662 

1()~2 3. 24388 

io-3 •!. 16957   i 

lo-1 5. 0227 

Appro.ximate Detection Probability 

The RVs   u   and V   in (0-135) are approximately Gaussian for large M.aml 
we can concentrate on their second moments.   We have already evaluated the 
mean and variance of U.   in (C-121) and (C-124).  The mean of RV V   is zero, 
as may be seen using (C-ll(J).   The mean of  RV uv   can be determined in a 
manner similar to that in (C-122) and (C-123); the result is found to b1 zero. 
The mean-square value of RV  V     is 

(n--y 

+ ^CsKc^-c,.s,J;5,c^i-eP5,Hf 

fC-lG?) 

IM 
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The four averages in (C-T67) are,  respectively, 

Therefore the variance of RV V is 

_2 2 ^S^C-c^^r], ^       M- 

The joint PDF of RVs w   and V    is approximated according to 

The probability of detection, using (C-134), is 

fi 
^^(^r^T'exp^^-^J 

."»L.A ■VVi> (M-iV^ 

\/^r 

where 

a = 

e = 

wt, 
(M-i)r^rw     ^   b=   ^   > 

x: 
(M-/)V^V/ 

cl=   ^ 
07/' 

(C-168) 

(C-1P9) 

(C-170^ 

(C-171) 

(C-172) 

For m=0 , changing to polar coordinates in (C-171) ani employing (C-130) and 
(C-1G9), there follows for the approximate false alarm probability 

%  =   f^pl-Xyz), (C-173) 

where normalized threshold 

X ^ 
T 

/^VVT-O+H) ' (C-174) 
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which agrees with (C-142) and ^C-156) for w = o and M = I .    respectively.   Then 
the quantities (C-172)   that are necessary lor  P    in (0171) are expressible in 
terms of  X   as 

Q M55 ^        '        * 
(C-175) 

The quantities  ho« ,  CT^ , and 0^,     are themselves available in (C-121),  (0-12^1), 
and (C-169),  respectively. 

Equations (C-171),  (C-173), and (C-175) constitute the approximations to 
D    for arbitrarv   u .    Threshold  X  is determined from (C-173) for a ?D  and   ,,,, 

specified ^,aticl substituted in (C-171) to evaluate Tp . However, for u-0 or^^l , 
X should be determined from (C-141) or (C-165), respectively, and substituted 
in (C-171) for evaluation of   P^ . 

Ai3i)ro>dmations for Small tn 

For small SNRs per sample, w\ «1.   The approximations in (C-130) are 
valid in this case, as is 

ö; - [~f /'* P(l + /)  - ^  , (c-l76) 
Then (C-171) becomes 

^~   ff _ JuJv^c)"gxp[- ^ir* 
\ff-w If T 

(C-177) 

and where we ' hanged to polar     "U'dinates and used (C-8),  (C-17(i),  (C-174] 
(C-130).   The factor involving u   in (C-177)   was encountered previously in 
(C-131) and was tabulated in table C-5; the comments made there are relevant 
here also.   It is important to note the    >v\ -dependence in (C-177) versus the 
linear   M-dependence in Processor II,  (C-7), and in Processor V,  (C-68). Thus, 
in addition to the suppression effect caused by the lack of knowledge of signal 
phas     ^0 , the phase-difference processor suffers further small-signal sup- 
pression,  for unknown signal frequency,   for all values of weighting constant u 
in (C-133). 

93/9-1 
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Appendix D 

SIMULATION PHÜCEÜUUE AND PROGRAM 

D. 1   SIMULATION 

In order to determine the ROCs lor the processors in tables i and 2, 10,000 
independent trials were conducted  lor each processor.  A trial consisted of the 
generation of 2M   independent zero-mean unit-variance Gaussian RVs.  To keep 
computer time and storage at reasonable levels, several different mean values 
were simultaneously added (in different summation registers) to each of the 
RVs,  which were then subjected to the various operations shown in tables 1 and 
2.  The number of threshold excursions of the resultant RVs were evaluated for 
a wide range of threshold settings.   A plot of the relative number of threshold 
crossings for a particular nonzero-mean versus the relative uumber lor a zero 
mean gave one curve of a ROC.  A sample program for Processors 1-VI is given 
in section D. 2. 

For a given added mean value, the number of excursions versus threshold 
settings are highly correlated RVs, resulting from the method described above 
for generating the ROCs.  This means that if the simulated ROC is above (below) 
the true ROC at one value of ?F  ,  it will very likely be above (below) the time 
value at other nearby values of T^   .    The way we have chosen to control this 
effect is to take many trials, namely,   10,000, Thus the standard deviation of a 
particular probability evaluation is   (f(| —p)/lO,ooq)    rs ,005" , where "p   is the 
probability of the particular event. 

In order to determine the correlation of the estimated ROC values, consider 
the following: The relative number of excursions above threshold A   for /V trials, 

w:. IS 
10 

r(A)_=-^ J^UK-A), (U-i) 

where  U'^ equals   I    if  Jj>0,  and equals   0   if  4< 0.  The mean of RV ffa)    is 

7^ = U(v.-A)   -     1- ?(A) H  Q(/\\ (D-2) 

where  T[A)  is the probability that  RV *    remains less than   A   .    If we keep 
the same realization of the   RVs   [vT    aH in (U-I)»  '^t subject them instead to 
threshold  B ,   yielding RV 

UO-i J^k-*), (D-3) 

i)5 
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the croHscorrelation coefficient of   tifit)   and   r(s)   readily follows as 

Q(y>v>x(A,ß))-Q(/v)Q(^ 

r~ [?(A)Q{A)?{B)Q(B)T 
using the independence of  ~K„  and   Xw  for n^w.   So, for example, if ^»B, (D-4) 
yields  p-1 , as it must.  However,  if A^ 0  ^md  B-l ,  for a zero-raean Gaussian 
[IV X* , there follows 

PfAKST,   PCB)^.^!,    P-,^3^ (D_5) 

Thus probability estimates as different as . 500 and . 841 are still rather highly 
correlated.  In order to avoid overly distorted estimates of the ROCs,  a large 
number of independent trials, N  ,    must be used. 

D. 2   SAMPLE PROGRAM 
THROUGH VI 

'OR PROCESSORS I 

PARAMETER M= 2,j.fHinS=iü0ü(TRiA 
DIMENSION Hll." UNS) .P12 (BINS) • 

*» K21(i'.lNb) »P22(BINS> » 
4» KiKnINS) fP3i:(bI(MS) » 
%, PUKrtlNb) ,PU2(B1NS) » 
it        .^bKrilNb)) »P52(BIfv.S) » 
i» P61(HlNb),P62(B1NS)» 
DIMENSION i,A(NUMSNH) »Sb(NUMSNf< 
iSF(NUMSNR),A(o)»B(o),Z(200)»R{ 
DIMENSION ol(blNS»NUMSNR)»02(B 

i UMBINS.iviUMS.MR) rü5(B 
REAL LKNUMSNR) »L21NUMSNH) rL3 

i.Lu(NUMSNH) fMAXM,MAAMSQ»MEAIoM 
EUUIVALENCL 

EüUIVALENCL 
EUUIVALENCC. 

EUUIVALENCL 

ECKUIVAUENCL 
EOUIVALENCU 
EUUIVALENCL 

EUUIVALENCL 
EOUIVALENCI. 

EUUIVALENCL 
EUUIVALENCL 
EUUIVALENCE 
DEFINE F(I 
MbTARTr.U 
DLLTAM=,1 

K=b**lb 
I=b26! 
00M=1,/M 
0uMSQ=00M»*2 
OOT-1,/TRlALS 

(01(1.1) 
(Oin .H) 
(02« I'D 
(02(1.H) 
(03(1»i) 
(0i(1.4) 
(04(1. I) 
(CM 1.4) 
{0S(l,i) 
(0b(1.4) 
(0o( l.i) 
(Oo(1.4) 

K ) = I * K + I ( 1 

.PID 

.P14) 

.P21) 
,P24) 
.P31) 
.PiiH) 
.P41) 
.P44) 
.Pbl) 
.Pb4) 
.Pol) 
.Pb<4) 

(OK 
(OK 
(02( 
(02( 
(03( 
(03( 
(04( 
(04( 
(0b( 
(05( 
(06' 
(06( 

•SIGNd.l 

LSrlO 
Pliit; 
P23(u 
P33(b 
P'+3(b 
P53(b 
P63(u 
) »SC( 
6) »So 
INS, I 
INS,N 
NUMSN 
TART 
1.2) 
1.5) 
1.2) 
Kb) 
K2) 
Kb) 
K2) 
Kb) 
K2) 
Kf.) 
1-2) 
Kb) 
*K) )/ 

0OO.NUMSNR=b 
INS) .Pli+(BlNb) .Plb(üINS) 
INS) .P2^(DI^;S) .H2b(BINS) 
INS) ,P3'+(BlNä) rP3b(üINS) 
INS).PHI(BINS).P4b(dlNS) 
INS) .Pb'+(B1NS) ,Pbb(BINS) 
INS) »PbMBlNS) .Pb5(dINS) 
'HiMSNR) ,SD(NüMStjH) PSE (NUMSNR) . 
(NUMSNR) 
UMSNR) ,ü3(blNS.lMUM&kR) , 
UMSNM).06(BINS. f JUMSNR) 
R),L4(NUMSNR),Lb(NUMSNR) . 

P12) , (01(K3) .P13) 
P16) 
f';") . (02(Kö) {Pc3) 
P2b) 
P32) . (03(K3) ,P33> 
P35) 
P42).(04(1.3),P43) 
P45) 
P52) . (Cb(K3) .Po3) 
Pbb) 
Pfe2) , (06(K3) ,Pfa3) 
P65) 
2)*343b973b367 

9() 
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3 
5 
H 

WAXMSQ=MrtXN*»i; 
A ( 1 )=-4,*SuM 

8l2)=MAXMSU+2.*0OM+8.*SQM»bOKT(MAXMSO+ü0^) 

A( 5)=2.-tl.»bU''' 
B (-5 ) =2 . +MAAMSQ+0 . *^QM*SQKT IMAXKS-H 1 . ) 
A('+)=-^,*Sv1ikTU. )*bQM 

A(b)=0. 
Blb)=l. 
A(6)=A(J) 
B16)=8(3) 
Du 11 UP=1.6 
R(t\1P)=DlNb/(lH .P)-A(rjP) ) 
DO 1 IT=1»1HIALS 
DO 9 J=l»Nuf5Nrt 

SA(J)=Ü. 
5b(J)=0. 
SC(J)=0. 
Su(J)=0. 
St(J)=0. 
SF(J)=0. 
St.(J)=0. 
CONTINUE 
Pbl=6.i;631o531/TRiALS»lT 
CP=COS(PSI) 
SP=SIN(PSI) 
DO 2 lM=l»i'i 
I=F(I»K) 
W = TIN0KM(FL0AT(I)/^'+35973ö-i67.»43> 

Go TO H 
PHI NT b, 
FORMAT(• PKOHLL^') 
I=F(I»IO 
V=TIN0KM(Fi.0AT(I)/Ot35973bi67. ,16) 

GO TO 7 
PRINT b» 
DO 8 J=l,NuM5NR 
MCAN=L)LLTAM* ( J-l )+lv'S~,wT 
IKJ.Eu.l) MEAw=0, 
WPM=W+MEAN 
X=wPM*CP-V*SP 
Y=V*CP+WPM*SP 
^A(J)=bA(J)+X 
Sb(J)=bB(J)+Y 
XS=X<'X 
Yb=Y*Y 
SC(J)=bC(J)+XS 
Sü(J)=bD(J)+Y5 
T=bQRTlXS+YS) 
IF(J.EU.I) GO ro m 
SO(J)=SG(J)+L0G(BbbL(T*MEAN.2)) 
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IC 
C 

12 
1 
C 

T=l./T 
SL(J)=SE(J)+X*T 
Sf- (J)=bF(J)+Y*F 
CONTINUE 
CONTINUE 
DO   10   J=1MMUMSIJP 

Li. (U)=OOM#(SA( J) »CH + SB( J)*bP) 
L<:(J)=üOMSu*(SA(J)**2+SÖJ J)**2) 
Lo(J)=uOM*l5C(J)+^J(J)) 
L^ ( J)=OOM*(SE( J) »Cf' + SFC J)«bP) 
Lb(d)=üOMSu« (SU < J) »«2 + bF(j)**i;) 
11- (J.GT.JL)   GO   TO   ^,1 
L6(J)=L3(J) 
GO   TO   10 
MLAN=OLLTA,N,«( J-5 j+.'iSTAHT 
Lb(J)=1.*0üM/MLAN«»2«SG(J) 
CONTINUE 

CAuCULATIüN   0|-   PD>- 
DO   12   j=l»NUMS M 
N-(L1(J)-Aa) )*R(1) 
N-MAX(ro 1 ) 
N=KIN(|j»blNS) 
OKNs J)=01lN. J)+00I 
N=(L2(J)-Al2))*H(2) 
N=MAX(Nil) 
N=MIN(W.B1IMS) 
02{N»J)=02lNfJ)+001 

N=(L.3(J)-Al3) )*R(J) 
N=MAX(N»1) 
N=MIN(N»BIN5) 
03(N,J)=03lNtJ)+Oül 
N=(Li+(j)-A(U) )»f (»+) 
N-MAX(N»1) 
N=MlN(N.BlNS) 
0»4(NpJ)=0'HNfJ)+OuF 
N=(L5(J)-A(5))*P(b) 
N-MAX(N»1) 
N=MIN(W»BIIMS) 
Ob(N.J)=05(NfJ)+OOT 
N=(Lb(c)-Alb))»^ (u) 
N=MAX(N»1) 
N=MIN(NIB1NS) 
Ob(fJp J)=06lNr J)+OOl 

CONTINUE 
CONTINUE 

CAuCULATIüN   01-   CDf: 

DO   13   j=l»NUMb-iP 
DO   13   lB=2fBINb 
01(dINb+l-lBrJ)=OiCBIN^-»-l-lB»J)+Oi(HiNs+2-Ib»J) 
0<:(bIN'J+l-iBFJ)=02(BINS+l-lB.J)+0^(.iINS+2-llWJ) 
0 S(8INs+l-lB.J)=0itBINb-H-iB»ü)+0i(1tINb+2-ILi.J) 
OU(dINbH-lBf J)=OH(BINb+l-Iß»J)+04(:31Nb+2-ll1.d) 
0b(aiNb+l-iB»J>=0b(BlNS+l-lB»J)+0a(MiNb+2-IL!»J) 
06(BlNb+l-iB»J)=0D{BINS+l-iB.J)+06(RINS+2-Ib,J) 
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O 

..5 

'- D 

<-/ 

J>2 

CUNT INut 
CALL   MüDEbo{2«C) 
CMLL   SuBjtu(Z»0. »0,»1,,1.) 
CALL 0bJCTo(2. Ubo.,iouo.»aßbo,,2700.) 
CMLL   LlNEbo(ZrMlNb.Pll,P12) 
CALL   LINt.Sü(Z.LUNb.PU»P13} 
CALL   LINES0(Z..ilNSfPll,PiU) 
CALL   LINEbo(ZM)INSfPll,P15) 
CALL   buBPLl 
CMLL   LlNtSt-tZ. jlNb.P21.P22) 
CALL   LiriLbL.{Z..lINb.P21.P2J) 
CALL   LlNfLbo(Z.c,.lNb.P21,P2'*) 
CALL LiNEbü{Z.HlNb»P21.P2b) 
CMLL buBPLl 
CALL LlNtSü(Z. aNb»P31,PJiJ) 
CALL LINESü(Z.-'lNbfP31.P33) 
CALL LINESb(Z..llNb.P31 .P3'+) 
CALL LirjEbo(ZrnlNb.P31,P3b) 
CALL SuBPLl 
CMLL LlNE5(j(Z.fiINb»P'+l,P'+2) 
CALL LlNESofZ.i'lNb.Pm.P^j) 
CALL LlNEbb(Zr;.tlN.J.PUl ,pi4U) 
CALL LlNESu(Z.inNb»P'+l.P»+b) 
CALL bUtiPLl 
CALL LjJJESuU.jlNb.Pbl.Pb2) 
CALL LiNEbo(Z.UNb,Pbl,Pb3) 
CALL LINLbo(Z.l)INb.PblfP5H) 
CALL LlNLSoC:. iINb.PSl.Pbb) 
CALL bUHPL] 
CALL LlNESü(Z.HlNb.P6l.P62) 
CALL LINESü(ZmlNS.P61.P63) 
CALL LlNEbb(Z.'nNS.P6l,P64) 
CALL LINF  jtJ.-ilNb.Pbl.PbS) 
CALL SuH 
PFL=.l 
DO 21 iB=l.BlNS 
Ki-IB 
It- (Pll(IB) .LT.PfL) GO TO 22 
DU 23 iDzl .BIN-D 

U (P21 ( IB) .LT.iJ' L) GO TO 2*4 
DU 25 IB-1,HIN i 
K3zIB 
If- (P31 ( IB) .LT.l'FL) GO 10 2b 
Du 27 IB-1.BIN , 

If-(PUKIB) .LT.PfL) GO TO ^Ü 
DU 29 ifl=l.BINb 
Kb=IB 
II- (Pbl l IB) .LT.PFL) GO TO 30 
DO 31 lB=l.BINb 
Kb=IB 
If- (Pbl ( IB) .LT.PFL) GO TO 32 
CALL buUJEO{Z.O. .Ü.rPFL.l.) 
CALL LiNESv. (Z.hlNb+1-Kl .P1A(K1),P12(K1)) 
CALL   LlNESuiZ^'lNbtl-Kl,P1J (Kl)»P13(K1 ) ) 
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CALL LIUZS^IZ 
CALL LlNESb(Z 
CALL S'jBPru 
CALL LlNLS.o(Z 
CALL LlNE:Sb(Z 
CALL LlNtSO(Z 
CALL LINESo(Z 
CALL SuBPf-L 
CALL LINESMZ 
CALL LINESutZ 
CALL LlNESo(Z 
CALL LlNESofZ 
CALL SuBPf-L 
CMLL LlNESo(Z 
CALL L1NLSO(Z 

CALL LiNES«(Z 
CALL LlNESo(Z 
CALL SUBPI-L 

CALL LlNESblZ 
CALL LltiLSol-'7 

CALL   LlNLSb(/i 
CALL I_INESL-(Z 

CALL SUBPFL 
CALL LlNESb(Z 
CALL LlNESo(Z 
CALL LINESotZ 
CALL LlNESo(Z 
CALL SuBPI-L 

Si 
23 

PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 

UB 
(IB 
(IB 
(IB 
(IB 
(I 

Bl 
i«l 

ul 
<\: 
'ti 
•ii 

IT 
hi 
tl 

•H 

ill 

dl 
Hi 
til 

U 
■II 

r</ 
•U 

i'l 

,u 
rjl 

PI 
P2 
P3 
P4 
PS 
P6 

NS+l-Kl 
NS+1-K1 

-K; 
1-K2 

Nb+1 
NS+1 . . 
Nb+1-K2 
Nb+1-K2 

NU+1-K3 
NS+1-K3 
Nb+1-K3 
NS+1-Ki 

Nb+l-KU 
NS+1-K14 
Nb+1-K4 
NS+l-KU 

fJbf 1-Kb 
(Jb+1-Kb 
Nj+1-Kb 
Nb+1-K5 

rjbn-K6 
Nb+1-Kb 
Nb+1-Kb 
Nb+l-Kb 

PIK 
Pii( 

P21( 
P2l( 
P21( 
P21( 

P31( 
P31( 
P31( 
P31( 

PHK 
P'*l( 
P41( 
PHii 

Pbl( 
PbK 
P51( 
PbK 

PbK 
P6K 
P61 f. 
P61( 

Kl 
Kl 

K2 
K2 
K2 
K2 

K3 
K3 
K3 
K3 

K<4 
Kit 
K4 
1(4 

K5 
Kb 
Kb 
Kb 

Kb 
Kb 
Kb 
Kb 

Pl4(Kl) 
Plb(Kl) 

P2t(K2j 
P23(K2) 
P2'*(K2) 
P^b(K2) 

P^t(K3) 
P33(K3) 
P3i4 (K3) 
P3b(K3! 

D4t;(K4) 
P'*3(Kt) 
P44{Ki+) 
Pi*b(K4) 

P52(K5) 
Pb3(K5) 
Pb'+(K5) 
Pbb(K5) 

Pb2(K6) 
P63(K6) 
P64(K6) 
Pbb(K6) 

33 
33 
33 

..-..,.,   33,    .,.,,.. 
JJ       FORMAT (i lO.SL'so. 

CALL ExITt>(Z) 
SUbROUTlNE SUBPL 
CALL LINLSü(Z.Of 
CMLL LlNESbfZi1« 
CALL LlNESiJ(Zfl • 
CALL   LirjESio(Z. ; • 
CALL LINESO(Z». > 
CALL LINLSü(Z»I» 

CALL SLTSMo(Z»30 
Du 14 1L=1.9 
CALL LlNtSi5(Z.0p 
CALL LINESo(Z.l' 
CALL LlNESo(Z»n» 

it CALL   LlNESü(Z.1» 
CALL PAG£G(Z.0.2 

CALL SETSMü(Z.30 
RLTURN 
SUBROUTINE SUBPF 
CALL UNESotZ.C' 
CALL   LltJESljCZ» 1» 

KIB) ,P12(1B 
KIB) ,P22(IB 
KIB) »P32(IB 
KIB) a,'+2{iB 
KIB) rP52(IB 
KIB)»P62(IB 
8) 

) »pi3(ip>) ,pm(iü) fPibdb) r in=K,i .BIN1;) 
) .P23(IiM ,P24(lB),P25(lb) »IB=K*: .BINS) 
) rP33(lii) ,P3MIB)rP35(lb) »IB=K3,BINS) 
) »Pi+SdB) ,P44(IH) ,P45(Ib) »IBrK'+fBlNS) 
) rPSSKH) ,P54(IB) .Pbbdb) »IB=Kb.BlNS) 
) rP63(lR) »P6«*{IB) .PbbdO) r IB=KbfBlNS) 

0,»0.) 
0..1.) 
l.rl.) 
1..0.) 
Ü,.0, ) 
1..1.) 
. .b) 

.J*lLf( .) 

.^»IL.l. ) 
0.t.1*1L) 
I.» .KID 

rl.) 

L 
0.r0. ) 
0. .1, ) 
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CALL LlNESuUf l» tl»l.) 
CALU LINLSüfZ.1».l'O.J 
CALL LlNESüCZrIrO.rO,) 
CALL LINE;So(Z» 1 f .1 » . 1) 
CALL S£.TSMvj(Z»-iO» •'^ > 
Du 15 IL-1.9 

i.D 

CALL 

CALL 
CALL 

CALL 
CALL 
CALL 
RLTURN 
END 

Li^E.So(Z»C. .OloIL.O. ) 
LlNLbuCZrl»,0 >«1L. 1,) 
LINLSu(Z.C.O,..1»IL) 
LlNESu(Zr1r.1».1*IL) 
PA&LGIZ.Ü.?»!) 

SLTSMotZ.A0»1, ) 
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